论文标题

带有随机控制屏障函数的路径积分方法

Path Integral Methods with Stochastic Control Barrier Functions

论文作者

Tao, Chuyuan, Yoon, Hyung-Jin, Kim, Hunmin, Hovakimyan, Naira, Voulgaris, Petros

论文摘要

机器人系统的安全控制设计仍然具有挑战性,因为难以通过随机噪声扰动非线性动力学明确解决最佳控制。但是,计算设备的最新技术进步可以在线优化或基于抽样的方法来解决控制问题。例如,已提出了控制屏障函数(CBF),一种类似Lyapunov的控制算法,以数值求解凸优化,以确定控制输入以保留在安全集中。模型预测路径积分(MPPI)使用随机微分方程的正向采样来在线解决最佳控制问题。两种控制算法都广泛用于非线性系统,因为它们避免计算非线性动态函数的衍生物。在本文中,我们利用随机控制屏障功能(SCBF)的约束来限制基于样本的算法中的样本区域,从而确保从概率意义上确保安全性并通过随机微分方程提高样品效率。我们为算法的所需样本量提供了采样复杂性分析,并表明我们的算法所需的样品比原始的MPPI算法少。最后,我们将算法应用于混乱的环境中的路径计划问题,并比较算法的性能。

Safe control designs for robotic systems remain challenging because of the difficulties of explicitly solving optimal control with nonlinear dynamics perturbed by stochastic noise. However, recent technological advances in computing devices enable online optimization or sampling-based methods to solve control problems. For example, Control Barrier Functions (CBFs), a Lyapunov-like control algorithm, have been proposed to numerically solve convex optimizations that determine control input to stay in the safe set. Model Predictive Path Integral (MPPI) uses forward sampling of stochastic differential equations to solve optimal control problems online. Both control algorithms are widely used for nonlinear systems because they avoid calculating the derivatives of the nonlinear dynamic function. In this paper, we utilize Stochastic Control Barrier Functions (SCBFs) constraints to limit sample regions in the sample-based algorithm, ensuring safety in a probabilistic sense and improving sample efficiency with a stochastic differential equation. We provide a sampling complexity analysis for the required sample size of our algorithm and show that our algorithm needs fewer samples than the original MPPI algorithm does. Finally, we apply our algorithm to a path planning problem in a cluttered environment and compare the performance of the algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源