论文标题
新颖阶级发现的相互信息引导的知识转移
Mutual Information-guided Knowledge Transfer for Novel Class Discovery
论文作者
论文摘要
我们解决了新颖的类发现问题,旨在根据可见类别的数据在未标记的数据中发现新颖的类。主要的挑战是将所见类中包含的知识转移到看不见的知识中。先前的方法主要通过共享表示空间或关节标签空间传输知识。但是,他们倾向于忽略可见类别和看不见的类别之间的阶级关系,因此学习的表示对聚类的看不见类别的有效性较小。在本文中,我们提出了一种原则和一般方法,以在见证和看不见的阶级之间传递语义知识。我们的见解是利用共同信息来衡量受限的标签空间中可见类和看不见的类之间的关系,并最大化相互信息可以促进传递语义知识的传递。为了验证我们方法的有效性和概括,我们在新的类发现和一般新型类发现设置上进行了广泛的实验。我们的结果表明,所提出的方法在几个基准上的优于先前的SOTA优于先前的SOTA。
We tackle the novel class discovery problem, aiming to discover novel classes in unlabeled data based on labeled data from seen classes. The main challenge is to transfer knowledge contained in the seen classes to unseen ones. Previous methods mostly transfer knowledge through sharing representation space or joint label space. However, they tend to neglect the class relation between seen and unseen categories, and thus the learned representations are less effective for clustering unseen classes. In this paper, we propose a principle and general method to transfer semantic knowledge between seen and unseen classes. Our insight is to utilize mutual information to measure the relation between seen classes and unseen classes in a restricted label space and maximizing mutual information promotes transferring semantic knowledge. To validate the effectiveness and generalization of our method, we conduct extensive experiments both on novel class discovery and general novel class discovery settings. Our results show that the proposed method outperforms previous SOTA by a significant margin on several benchmarks.