论文标题

对多物体机器人操纵的密集物体网的有效且可靠的训练

Efficient and Robust Training of Dense Object Nets for Multi-Object Robot Manipulation

论文作者

Adrian, David B., Kupcsik, Andras Gabor, Spies, Markus, Neumann, Heiko

论文摘要

我们提出了一个框架,用于对密集对象网(DON)进行稳健有效的训练,重点是多对象机器人操纵方案。 DON是一种获取密集的,视图的对象描述符的流行方法,可用于机器人操纵中的多种下游任务,例如,姿势估计,控制状态的状态表示等。但是,对单人的原始工作培训,对单人的对象进行了专注,并且对实例特异性,多目标应用程序的结果有限。此外,训练需要复杂的数据收集管道,包括每个对象的3D重建和掩盖注释。在本文中,我们通过简化的数据收集和培训制度进一步提高了DON的功效,从而始终如一地产生更高的精度,并能够对具有较少数据要求的关键点进行强有力的跟踪。特别是,我们专注于使用多物体数据而不是单人型对象进行培训,并结合精心挑选的增强方案。我们还针对原始PixelWise配方提出了一种替代损失公式,该配方提供了更好的结果,并且对超参数较少敏感。最后,我们在现实的机器人抓握任务上展示了我们提出的框架的鲁棒性和准确性。

We propose a framework for robust and efficient training of Dense Object Nets (DON) with a focus on multi-object robot manipulation scenarios. DON is a popular approach to obtain dense, view-invariant object descriptors, which can be used for a multitude of downstream tasks in robot manipulation, such as, pose estimation, state representation for control, etc.. However, the original work focused training on singulated objects, with limited results on instance-specific, multi-object applications. Additionally, a complex data collection pipeline, including 3D reconstruction and mask annotation of each object, is required for training. In this paper, we further improve the efficacy of DON with a simplified data collection and training regime, that consistently yields higher precision and enables robust tracking of keypoints with less data requirements. In particular, we focus on training with multi-object data instead of singulated objects, combined with a well-chosen augmentation scheme. We additionally propose an alternative loss formulation to the original pixelwise formulation that offers better results and is less sensitive to hyperparameters. Finally, we demonstrate the robustness and accuracy of our proposed framework on a real-world robotic grasping task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源