论文标题

具有交互式固定效果的高维置面板数据模型的估计和推断

Estimation and Inference in High-Dimensional Panel Data Models with Interactive Fixed Effects

论文作者

Ruecker, Maximilian, Vogt, Michael, Linton, Oliver, Walsh, Christopher

论文摘要

我们开发了具有互动固定效应的高维置面板数据模型中的估计和推理的新计量方法。我们的方法可以被视为非常流行的常见相关效应(CCE)方法的非平凡扩展。粗略地说,我们按以下方式进行:我们首先构建一个投影装置,以通过将尺寸降低变换应用于横截面平均协变量的矩阵来消除模型中的未观察到因子。然后,通过将套索技术应用于投影模型来估算未知参数。出于推理的目的,我们得出了套索型估算器的除外版本。虽然原始的CCE方法仅限于低维情况,在该情况下,回归器数量较小且固定,但我们的方法可以处理低维情况和高维情况,在这种情况下,回归器数量较大,甚至可能超过整体样本量。在大型T-Case中,我们为我们的估计和推理方法得出了理论,其中时间序列长度t倾向于无穷大,以及在t是固定自然数的小型T-Case中。具体而言,我们得出了估计器的收敛速率,并表明其除外版本在适当的规律性条件下渐近地正常。该论文的理论分析是通过模拟研究和基于特征性资产定价的经验应用来补充的。

We develop new econometric methods for estimation and inference in high-dimensional panel data models with interactive fixed effects. Our approach can be regarded as a non-trivial extension of the very popular common correlated effects (CCE) approach. Roughly speaking, we proceed as follows: We first construct a projection device to eliminate the unobserved factors from the model by applying a dimensionality reduction transform to the matrix of cross-sectionally averaged covariates. The unknown parameters are then estimated by applying lasso techniques to the projected model. For inference purposes, we derive a desparsified version of our lasso-type estimator. While the original CCE approach is restricted to the low-dimensional case where the number of regressors is small and fixed, our methods can deal with both low- and high-dimensional situations where the number of regressors is large and may even exceed the overall sample size. We derive theory for our estimation and inference methods both in the large-T-case, where the time series length T tends to infinity, and in the small-T-case, where T is a fixed natural number. Specifically, we derive the convergence rate of our estimator and show that its desparsified version is asymptotically normal under suitable regularity conditions. The theoretical analysis of the paper is complemented by a simulation study and an empirical application to characteristic based asset pricing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源