论文标题

随机扰动图中的循环长度

Cycle lengths in randomly perturbed graphs

论文作者

Aigner-Horev, Elad, Hefetz, Dan, Krivelevich, Michael

论文摘要

令$ g $为$ n $ vertex图,其中$δ(g)\geqΔn$对于某些$δ:=δ(n)$。 Bohman,Frieze和Martin 2003年的结果断言,如果$α(g)= o \ left(δ^^2 n \右)$,然后通过添加$ω\ left(\ frac {\ frac {\ log log(1/δ)} {δ^3} {Δ^3} \右$ thereaster,A.A.A.A.A.A.A.A.A.A.A.A.A.A.a哈密​​顿图。只有当$δ$独立于$ n $而变质时,当$δ=ω\ left(n^{ - 1/3} \ right)$时,这种束缚才会紧密。 我们证明了上述结果的一些改进和扩展。首先,将限制在上面的$α(g)$上,并允许$δ=ω(n^{ - 1/3})$,我们确定随机边的正确数量的正确数量级,其添加到$ g $ a.a.s.s.s.导致庞然大镜图。我们的第二个结果冒险涉及稀疏图$ g $;假设$δ(g)=ω\ left(((α(g)\ log n)^2 \右)$δ(g)^2 \ right)$Δ(g)和$α(g)δ(g)δ(g)= o(n)$,它几乎紧密地绑定了所需的随机扰动大小。 假设Chvátal的韧性猜想的正确性可以减轻条件$α(g)= o \ lest(Δ^^2 n \右)$上面施加的$α(g)= o(δ(g))$而不是;我们的第三个结果决定了$δ(g)$的广泛范围,即确保A.A.S.所需的随机扰动大小的正确数量级。 $ g $的列车。 对于几乎跨越周期的出现,我们的第四个结果在较轻的条件下确定了正确的随机扰动大小的正确数量级,以确保A.A.S. $ g $包含这样的周期。

Let $G$ be an $n$-vertex graph, where $δ(G) \geq δn$ for some $δ:= δ(n)$. A result of Bohman, Frieze and Martin from 2003 asserts that if $α(G) = O \left(δ^2 n \right)$, then perturbing $G$ via the addition of $ω\left(\frac{\log(1/δ)}{δ^3} \right)$ random edges, asymptotically almost surely (a.a.s. hereafter) results in a Hamiltonian graph. This bound on the size of the random perturbation is only tight when $δ$ is independent of $n$ and deteriorates as to become uninformative when $δ= Ω\left(n^{-1/3} \right)$. We prove several improvements and extensions of the aforementioned result. First, keeping the bound on $α(G)$ as above and allowing for $δ= Ω(n^{-1/3})$, we determine the correct order of magnitude of the number of random edges whose addition to $G$ a.a.s. results in a pancyclic graph. Our second result ventures into significantly sparser graphs $G$; it delivers an almost tight bound on the size of the random perturbation required to ensure pancyclicity a.a.s., assuming $δ(G) = Ω\left((α(G) \log n)^2 \right)$ and $α(G) δ(G) = O(n)$. Assuming the correctness of Chvátal's toughness conjecture, allows for the mitigation of the condition $α(G) = O \left(δ^2 n \right)$ imposed above, by requiring $α(G) = O(δ(G))$ instead; our third result determines, for a wide range of values of $δ(G)$, the correct order of magnitude of the size of the random perturbation required to ensure the a.a.s. pancyclicity of $G$. For the emergence of nearly spanning cycles, our fourth result determines, under milder conditions, the correct order of magnitude of the size of the random perturbation required to ensure that a.a.s. $G$ contains such a cycle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源