论文标题
在缩减约束和好奇的方形规则下的最佳股息
Optimal dividends under a drawdown constraint and a curious square-root rule
论文作者
论文摘要
在本文中,我们解决了由布朗尼运动控制的盈余过程中最佳股息支付策略的问题,在下降限制下漂移,即股息利率永远不会降低以下其历史最高最高的给定分数$ a $。我们解决了所得的二维最佳控制问题,并将值函数确定为相应的汉密尔顿 - 雅各比 - 贝尔曼方程的唯一粘度解。然后,我们得出了足够的条件,在该条件下,两曲线策略是最佳的,并展示了如何使用变化的计算来确定其混凝土形式。我们建立一个平稳的原则,并显示如何使用它来证明两曲线策略的最佳性,以实现足够大的初始和最大股息率。我们还提供了许多数值插图,其中可以为具有最大股息率的较小值的实例建立两曲线策略的最优性,并且可以确定曲线的混凝土形式。有人观察到,所得的下水道策略在经典无约束股息问题的解决方案与棘轮约束的解决方案之间很好地插值,如Albrecher等人最近研究的棘轮约束。 (2022)。当允许的最高股息率趋于无穷大时,我们就会显示出令人惊讶的简单且有些有趣的极限,从而,对于盈余水平的参数$ a $ a $,从中,对于当前足够大的当前股息率而言,在拖放约束的情况下,收取金钱和股票策略是最佳的。
In this paper we address the problem of optimal dividend payout strategies from a surplus process governed by Brownian motion with drift under a drawdown constraint, i.e. the dividend rate can never decrease below a given fraction $a$ of its historical maximum. We solve the resulting two-dimensional optimal control problem and identify the value function as the unique viscosity solution of the corresponding Hamilton-Jacobi-Bellman equation. We then derive sufficient conditions under which a two-curve strategy is optimal, and show how to determine its concrete form using calculus of variations. We establish a smooth-pasting principle and show how it can be used to prove the optimality of two-curve strategies for sufficiently large initial and maximum dividend rate. We also give a number of numerical illustrations in which the optimality of the two-curve strategy can be established for instances with smaller values of the maximum dividend rate, and the concrete form of the curves can be determined. One observes that the resulting drawdown strategies nicely interpolate between the solution for the classical unconstrained dividend problem and the one for a ratcheting constraint as recently studied in Albrecher et al. (2022). When the maximum allowed dividend rate tends to infinity, we show a surprisingly simple and somewhat intriguing limit result in terms of the parameter $a$ for the surplus level on from which, for sufficiently large current dividend rate, a take-the-money-and-run strategy is optimal in the presence of the drawdown constraint.