论文标题
Mirac-5:一种基于地面的MID-IR仪器,其潜力检测气体巨人的氨
MIRAC-5: A ground-based mid-IR instrumentwith the potential to detect ammonia in gas giants
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We present the fifth incarnation of the Mid-Infrared Array Camera (MIRAC-5) instrument which will use a new GeoSnap (3 - 13 microns) detector. Advances in adaptive optics (AO) systems and detectors are enabling ground-based mid-infrared systems capable of high spatial resolution and deep contrast. As one of the only 3 - 13 micron cameras used in tandem with AO, MIRAC-5 will be complementary to the James Webb Space Telescope (JWST) and capable of characterizing gas giant exoplanets and imaging forming protoplanets (helping to characterize their circumplanetary disks). We describe key features of the MIRAC-5 GeoSnap detector, a long-wave Mercury-Cadmium-Telluride (MCT) array produced by Teledyne Imaging Sensors (TIS), including its high quantum efficiency (> 65%), large well-depth, and low noise. We summarize MIRAC-5's important capabilities, including prospects for obtaining the first continuum mid-infrared measurements for several gas giants and the first 10.2-10.8 micron NH3 detection in the atmosphere of the warm companion GJ 504b (Teff ~550 K) within 8 hours of observing time. Finally, we describe plans for future upgrades to MIRAC-5 such as adding a coronagraph. MIRAC-5 will be commissioned on the MMT utilizing the new MAPS AO system in late 2022 with plans to move to Magellan with the MagAO system in the future.