论文标题
部分可观测时空混沌系统的无模型预测
Meta Auxiliary Learning for Low-resource Spoken Language Understanding
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Spoken language understanding (SLU) treats automatic speech recognition (ASR) and natural language understanding (NLU) as a unified task and usually suffers from data scarcity. We exploit an ASR and NLU joint training method based on meta auxiliary learning to improve the performance of low-resource SLU task by only taking advantage of abundant manual transcriptions of speech data. One obvious advantage of such method is that it provides a flexible framework to implement a low-resource SLU training task without requiring access to any further semantic annotations. In particular, a NLU model is taken as label generation network to predict intent and slot tags from texts; a multi-task network trains ASR task and SLU task synchronously from speech; and the predictions of label generation network are delivered to the multi-task network as semantic targets. The efficiency of the proposed algorithm is demonstrated with experiments on the public CATSLU dataset, which produces more suitable ASR hypotheses for the downstream NLU task.