论文标题
对称的三分之一纠缠状态的实验结构及其在测试NMR量子模拟器上违反铃铛不等式的实用性
Experimental construction of a symmetric three-qubit entangled state and its utility in testing the violation of a Bell inequality on an NMR quantum simulator
论文作者
论文摘要
我们设计了一个量子电路来准备一个称为$ \ vert {\ rm s} \ rangle $ state的最大对称纠缠的三分之三状态,并在NMR量子处理器上实验创建它。该州的纠缠存在通过计算两种不同的纠缠措施,即消极和同意来认证。我们使用$ \ vert {\ rm s} \ rangle $状态与一组最大不相容的本地测量值,以证明Sliwa的分类方案中对不平等的最大违反$ 26 $,这是(3,2,2,2,2,2,2,2)的场景。三个方案和两个级别的情况,这是一个紧密的钟声。
We designed a quantum circuit to prepare a permutation-symmetric maximally entangled three-qubit state called the $\vert {\rm S} \rangle$ state and experimentally created it on an NMR quantum processor. The presence of entanglement in the state was certified by computing two different entanglement measures, namely negativity and concurrence. We used the $\vert {\rm S} \rangle$ state in conjunction with a set of maximally incompatible local measurements, to demonstrate the maximal violation of inequality number $26$ in Sliwa's classification scheme, which is a tight Bell inequality for the (3,2,2) scenario i.e. the three party, two measurement settings and two measurement outcomes scenario.