论文标题

多视图数据的等级核定标准惩罚

Hierarchical nuclear norm penalization for multi-view data

论文作者

Yi, Sangyoon, Wong, Raymond K. W., Gaynanova, Irina

论文摘要

从多个来源(即多视图数据)上收集的相同样本集中收集的数据的流行率促使基于低级别矩阵分数化的数据集成方法的显着开发。这些方法将来自每种视图的信号矩阵分解为共享和单个结构的总和,这些结构被进一步用于降低尺寸,探索性分析和跨视图的量化关联。但是,由于模型过于限制或限制性可识别性条件,现有方法在建模部分共享的结构时存在局限性。为了应对这些挑战,我们基于将视图分组为所谓的层次结构级别制定了一个新的模型。拟议的层次结构使我们引入了新的惩罚,分层核定常(HNN),以进行信号估计。与现有方法相反,HNN惩罚避免了信号的分数和负载分解,并导致凸优化问题,我们使用双向前回去算法解决了这一问题。我们提出了一个简单的改装过程,以调整惩罚偏见并开发用于选择调谐参数的BI-CROSS验证版本。广泛的仿真研究和对基因型 - 组织表达数据的分析证明了我们方法比现有替代方案的优势。

The prevalence of data collected on the same set of samples from multiple sources (i.e., multi-view data) has prompted significant development of data integration methods based on low-rank matrix factorizations. These methods decompose signal matrices from each view into the sum of shared and individual structures, which are further used for dimension reduction, exploratory analyses, and quantifying associations across views. However, existing methods have limitations in modeling partially-shared structures due to either too restrictive models, or restrictive identifiability conditions. To address these challenges, we formulate a new model for partially-shared signals based on grouping the views into so-called hierarchical levels. The proposed hierarchy leads us to introduce a new penalty, hierarchical nuclear norm (HNN), for signal estimation. In contrast to existing methods, HNN penalization avoids scores and loadings factorization of the signals and leads to a convex optimization problem, which we solve using a dual forward-backward algorithm. We propose a simple refitting procedure to adjust the penalization bias and develop an adapted version of bi-cross-validation for selecting tuning parameters. Extensive simulation studies and analysis of the genotype-tissue expression data demonstrate the advantages of our method over existing alternatives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源