论文标题
$ K $ -Median通过公制嵌入聚类:通过差异隐私进行更好的初始化
$k$-Median Clustering via Metric Embedding: Towards Better Initialization with Differential Privacy
论文作者
论文摘要
在设计聚类算法时,初始中心的选择对于学习簇的质量至关重要。在本文中,我们基于数据结构的公制嵌入树结构的构建,开发了一种称为HST初始化的新初始化方案,称为HST初始化,为$ k $ -Median问题(例如,图形诱导的空间引起的离散空间)。从树中,我们提出了一种新颖有效的搜索算法,用于良好的初始中心,随后可用于本地搜索算法。我们提出的HST初始化可以产生与另一种流行初始化方法$ K $ -Median ++的初始中心,具有可比的效率。 HST初始化也可以扩展到差异隐私(DP)的设置以生成私人初始中心。我们表明,应用DP本地搜索后,我们的私有HST初始化会改善对近似错误的先前结果,并在小因素内接近下限。实验证明了理论的合理性,并证明了我们提出的方法的有效性。我们的方法也可以扩展到$ k $ -MEANS问题。
When designing clustering algorithms, the choice of initial centers is crucial for the quality of the learned clusters. In this paper, we develop a new initialization scheme, called HST initialization, for the $k$-median problem in the general metric space (e.g., discrete space induced by graphs), based on the construction of metric embedding tree structure of the data. From the tree, we propose a novel and efficient search algorithm, for good initial centers that can be used subsequently for the local search algorithm. Our proposed HST initialization can produce initial centers achieving lower errors than those from another popular initialization method, $k$-median++, with comparable efficiency. The HST initialization can also be extended to the setting of differential privacy (DP) to generate private initial centers. We show that the error from applying DP local search followed by our private HST initialization improves previous results on the approximation error, and approaches the lower bound within a small factor. Experiments justify the theory and demonstrate the effectiveness of our proposed method. Our approach can also be extended to the $k$-means problem.