论文标题
($β$形式的)分区功能层次结构的可整合性,$ w $ - 代表
Superintegrability for ($β$-deformed) partition function hierarchies with $W$-representations
论文作者
论文摘要
我们使用$ w $表示的($β$形式的)分区函数层次结构。基于$ w $的代表,我们分别分析了可融合性属性,并分别在Schur函数和插孔多项式方面得出其角色扩展。一些众所周知的可促进基质模型,例如高斯遗产单矩阵模型(在外部场中),$ n \ times n $复杂矩阵模型,$β$ - 成型的高斯遗产和矩形复杂矩阵模型都包含在构造层次中。
We construct the ($β$-deformed) partition function hierarchies with $W$-representations. Based on the $W$-representations, we analyze the superintegrability property and derive their character expansions with respect to the Schur functions and Jack polynomials, respectively. Some well known superintegrable matrix models such as the Gaussian hermitian one-matrix model (in the external field), $N\times N$ complex matrix model, $β$-deformed Gaussian hermitian and rectangular complex matrix models are contained in the constructed hierarchies.