论文标题
非全能几何形状中的三体连续体状态和Efimov物理
Three-body continuum states and Efimov physics in non-integer geometry
论文作者
论文摘要
研究了三个短距离相互作用颗粒的连续结构在变形的外部一体场中。我们在具有依赖尺寸的角动量屏障的球形计算中,使用了使用非整数尺寸的等效$ d $ -Method,$ d $。我们专注于接近临界维度的尺寸,$ d = d_e $在两到三个之间,由零两体能量定义,其中可能发生efimov效应。我们为该维区域设计了一种示意性,长距离逼真的,基于方形的三体球形模型,该模型用于得出波函数的分析表达式,散射长度,相移和弹性散射横截面。该过程和结果是通用的,对所有短距离电位有效,并且对于较大的散射长度。我们通过三个相同玻色子的最简单系统讨论了派生表达式的特性和有效性。派生的表达式对于非常小的能量特别有用,在非常小的能量中,完整的数值计算通常不可行。对于可以执行数值计算的能量,可以找到与分析结果良好的一致性。这些模型结果可以通过在等效外部变形振荡器电位中的三个颗粒的散射实验来测试。跨部分在零能量的零限制中都消失了,$ d <3 $,具有确定的$ d $依赖的能源。
Continuum structures of three short-range interacting particles in a deformed external one-body field are investigated. We use the equivalent $d$-method employing non-integer dimension, $d$, in a spherical calculation with a dimension-dependent angular momentum barrier. We focus on dimensions close to the critical dimension, $d=d_E$, between two and three, defined by zero two-body energies, where the Efimov effect can occur. We design for this dimension region a schematic, long-distance realistic, square-well based, three-body spherical model, which is used to derive analytic expressions for the wave functions, scattering lengths, phase shifts, and elastic scattering cross sections. The procedure and the results are universal, valid for all short-range potentials, and for large scattering lengths. We discuss the properties and validity of the derived expressions by means of the simplest system of three identical bosons. The derived expressions are particularly useful for very small energies, where full numerical calculations are often not feasible. For energies where the numerical calculations can be performed, a good agreement with the analytic results is found. These model results may be tested by scattering experiments for three particles in an equivalent external deformed oscillator potential. The cross sections all vanish in the zero-energy limit for $d<3$ with definite $d$-dependent power of energy.