论文标题

与关系推理的多代理轨迹预测的动态组感知网络

Dynamic-Group-Aware Networks for Multi-Agent Trajectory Prediction with Relational Reasoning

论文作者

Xu, Chenxin, Wei, Yuxi, Tang, Bohan, Yin, Sheng, Zhang, Ya, Chen, Siheng

论文摘要

揭开多个代理之间的相互作用与过去的轨迹之间的相互作用至关重要。但是,以前的作品主要考虑与有限的关系推理的静态,成对的相互作用。为了促进更全面的互动建模和关系推理,我们提出了Dyngroupnet,这是一个动态群体感知的网络,i)可以在高度动态的场景中建模时间变化的交互; ii)捕获配对和小组互动; iii)理由相互作用强度和类别没有直接监督。基于Dyngroupnet,我们进一步设计了一个预测系统,以预测具有动态关系推理的社会合理轨迹。提出的预测系统利用高斯混合模型,多个抽样和预测改进,分别促进预测多样性,训练稳定性和轨迹平滑度。广泛的实验表明:1)dyngroupnet可以捕获随时间变化的群体行为,在轨迹预测过程中推断时间变化的相互作用类别和相互作用强度,而无需在物理模拟数据集上进行任何关系监督; 2)DynGroupNet优于最先进的轨迹预测方法,其显着提高了22.6%/28.0%,26.9%/34.9%,5.1%/13.0%的NBA,NBL NFL足球和SDD数据集的ADE/FDE,并在Eth-uscy DataSetset上实现了正式的表现。

Demystifying the interactions among multiple agents from their past trajectories is fundamental to precise and interpretable trajectory prediction. However, previous works mainly consider static, pair-wise interactions with limited relational reasoning. To promote more comprehensive interaction modeling and relational reasoning, we propose DynGroupNet, a dynamic-group-aware network, which can i) model time-varying interactions in highly dynamic scenes; ii) capture both pair-wise and group-wise interactions; and iii) reason both interaction strength and category without direct supervision. Based on DynGroupNet, we further design a prediction system to forecast socially plausible trajectories with dynamic relational reasoning. The proposed prediction system leverages the Gaussian mixture model, multiple sampling and prediction refinement to promote prediction diversity, training stability and trajectory smoothness, respectively. Extensive experiments show that: 1)DynGroupNet can capture time-varying group behaviors, infer time-varying interaction category and interaction strength during trajectory prediction without any relation supervision on physical simulation datasets; 2)DynGroupNet outperforms the state-of-the-art trajectory prediction methods by a significant improvement of 22.6%/28.0%, 26.9%/34.9%, 5.1%/13.0% in ADE/FDE on the NBA, NFL Football and SDD datasets and achieve the state-of-the-art performance on the ETH-UCY dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源