论文标题
在4维扭曲器空间中的一组理性曲线上的几乎接触结构
Almost contact structures on the set of rational curves in a 4-dimensional twistor space
论文作者
论文摘要
在本文中,我们提供了某些5维复合物空间与4维扭曲器空间之间的对应关系。空间几乎是接触歧管,其曲率张量满足某些条件。通过使用对应关系,我们表明可以从Ren-Wang Twistor空间获得5维K-contact歧管,该空间是从\ c^4的两个副本中获得的,该副本通过holomorthic Map识别开放子集。通过此结果,可以在ITOH的框架中解释Ren-Wang扭曲空间。
In this paper, we provide a correspondence between certain 5-dimensional complex spacetimes and 4-dimensional twistor spaces. The spacetimes are almost contact manifolds whose curvature tensor satisfies certain conditions. By using the correspondence, we show that a 5-dimensional K-contact manifold can be obtained from the Ren-Wang twistor space, which is obtained from two copies of \C^4 identifying open subsets by a holomorphic map. From this result, the Ren-Wang twistor space can be interpreted in the framework of Itoh.