论文标题
两分纯量子状态中纠缠措施的敏感性
Sensitivity of entanglement measures in bipartite pure quantum states
论文作者
论文摘要
纠缠量量化量子状态中包含的量子纠缠量。通常,不同的纠缠措施不必部分订购。但是,所有量子状态的两个纠缠度量之间存在明确的部分秩序,因此可以有意义地概念化对纠缠的敏感性,这对于产生较大数值的纠缠措施将更大。在这里,我们研究了基于双分部分纯量子状态的施密特分解的四个纠缠措施的归一化版本之间的部分顺序,即同意,缠结,纠缠稳健性和施密特数。我们已经表明,在这四个措施中,同意和施密特数的敏感性分别对量子纠缠的最高敏感性和最低敏感性。此外,我们已经证明了如何使用这些措施来跟踪由两个Qutrits组成的简单量子玩具模型中的量子纠缠动力学。最后,我们采用了与国家依赖的纠缠统计数据来计算量子可观察结果与不确定性原则一致的可测量相关性。提出的结果可能有助于量子应用,这些应用需要监视可用的量子资源,以尖锐地识别最大纠缠或系统可分离性的时间点。
Entanglement measures quantify the amount of quantum entanglement that is contained in quantum states. Typically, different entanglement measures do not have to be partially ordered. The presence of a definite partial order between two entanglement measures for all quantum states, however, allows for meaningful conceptualization of sensitivity to entanglement, which will be greater for the entanglement measure that produces the larger numerical values. Here, we have investigated the partial order between the normalized versions of four entanglement measures based on Schmidt decomposition of bipartite pure quantum states, namely, concurrence, tangle, entanglement robustness and Schmidt number. We have shown that among those four measures, the concurrence and the Schmidt number have the highest and the lowest sensitivity to quantum entanglement, respectively. Further, we have demonstrated how these measures could be used to track the dynamics of quantum entanglement in a simple quantum toy model composed of two qutrits. Lastly, we have employed state-dependent entanglement statistics to compute measurable correlations between the outcomes of quantum observables in agreement with the uncertainty principle. The presented results could be helpful in quantum applications that require monitoring of the available quantum resources for sharp identification of temporal points of maximal entanglement or system separability.