论文标题

双变量复合泊松风险流程与冲击

Bivariate Compound Poisson Risk Processes with Shocks

论文作者

Jordanova, Pavlina, Veleva, Evelina, Mitov, Kosto

论文摘要

当代保险理论集中在具有不同类型的政策和冲击事件的模型上,可能会影响其中一些付款。 Jordanova(2018)考虑了一个模型,其中震动事件贡献了总索赔金额,其索赔规模与不同类型的政策相同的价值。乔丹诺娃(Jordanova)和维勒瓦(Veleva,2021年)走近现实生活中的一步,并允许震惊事件使不同类型的政策造成不同的索赔规模。在该论文中,假定计数过程是多项式的。在这里,它被不同的独立均质毒药所取代。双变量索赔计数过程以两种不同的方式表示。完全描述了其边缘和条件分布。计算这些过程的均方回归。获得了laplace-stieltjes的转换,并获得了总索赔量过程的数值特征。讨论了无限时间的风险储备过程和废墟的概率。在最初的资本为零的情况下,对废墟和赤字(或严重程度)的赤字(或严重程度)的赤字(或严重程度)进行了彻底调查。获得了它们的平均值,概率质量函数和概率生成函数。 尽管该模型是由多元计数过程构建的,但沿论文表明,总的索赔量过程在随机上等同于单变量复合泊松过程。这些使我们能够将所考虑的风险模型减少到Cramer-Lundberg风险模型,使用相应的结果并为新模型得出结论。可以获得更多类型的政策和更多类型的冲击事件的类似结果。 如果索赔大小分配成倍分布,则将应用结果。 随机等效的模型可以在排队理论中类似地构建。

Contemporary insurance theory is concentrated on models with different types of polices and shock events may influence the payments on some of them. Jordanova (2018) considered a model where a shock event contributes to the total claim amount with one and the same value of the claim sizes to different types of polices. Jordanova and Veleva (2021) went a step closer to real-life situations and allowed a shock event to cause different claim sizes to different types of polices. In that paper, the counting process is assumed to be Multinomial. Here it is replaced with different independent homogeneous Poison processes. The bivariate claim counting process is expressed in two different ways. Its marginals and conditional distributions are totally described. The mean square regression of these processes is computed. The Laplace-Stieltjes transforms and numerical characteristics of the total claim amount processes are obtained. The risk reserve process and the probabilities of ruin in infinite time are discussed. The risk reserve just before the ruin and the deficit (or the severity) at ruin are thoroughly investigated in the case when the initial capital is zero. Their means, probability mass functions, and probability generating functions are obtained. Although the model is constructed by a multivariate counting process, along the paper it is shown that the total claim amount process is stochastically equivalent to a univariate compound Poisson process. These allow us to reduce the considered risk model to a Cramer-Lundberg risk model, to use the corresponding results, and to make the conclusions for the new model. Analogous results can be obtained for more types of polices and more types of shock events. The results are applied in case when the claim sizes are exponentially distributed. Stochastically equivalent models could be analogously constructed in queuing theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源