论文标题

基于神经网络模型的超新星光曲线近似

Supernova Light Curves Approximation based on Neural Network Models

论文作者

Demianenko, Mariia, Samorodova, Ekaterina, Sysak, Mikhail, Shiriaev, Aleksandr, Malanchev, Konstantin, Derkach, Denis, Hushchyn, Mikhail

论文摘要

由于天文学中的大数据实时处理,超新星的光度数据驱动分类成为挑战。最近的研究表明,基于各种机器学习模型的解决方案质量卓越。这些模型学会使用其光曲线作为输入来对超新星类型进行分类。预处理这些曲线是一个至关重要的步骤,会显着影响最终质量。在本次演讲中,我们研究了多层感知器(MLP),贝叶斯神经网络(BNN)的应用,并将流量(NF)归一化为单个光曲线的观测值。我们将这些近似值用作超新星分类模型的输入,并证明所提出的方法的表现优于基于适用于ZWICKY瞬态设施明亮瞬态调查光曲线的高斯工艺的最新方法。 MLP表现出与高斯工艺相似的质量和速度增加。就近似质量而言,标准化流量也超过了高斯过程。

Photometric data-driven classification of supernovae becomes a challenge due to the appearance of real-time processing of big data in astronomy. Recent studies have demonstrated the superior quality of solutions based on various machine learning models. These models learn to classify supernova types using their light curves as inputs. Preprocessing these curves is a crucial step that significantly affects the final quality. In this talk, we study the application of multilayer perceptron (MLP), bayesian neural network (BNN), and normalizing flows (NF) to approximate observations for a single light curve. We use these approximations as inputs for supernovae classification models and demonstrate that the proposed methods outperform the state-of-the-art based on Gaussian processes applying to the Zwicky Transient Facility Bright Transient Survey light curves. MLP demonstrates similar quality as Gaussian processes and speed increase. Normalizing Flows exceeds Gaussian processes in terms of approximation quality as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源