论文标题

IEXAM:基于面部检测和识别的新颖的在线考试监控和分析系统

iExam: A Novel Online Exam Monitoring and Analysis System Based on Face Detection and Recognition

论文作者

Yang, Xu, Wu, Daoyuan, Yi, Xiao, Lee, Jimmy H. M., Lee, Tan

论文摘要

由于COVID-19,许多学校通过视频会议软件(例如Zoom)进行了在线考试。虽然方便,但教师可以同时显示的学生变焦窗口监督在线考试。在本文中,我们提出了IEXAM,这是一种智能的在线考试监测和分析系统,不仅可以使用面部检测来帮助使入侵者实时学生识别,还可以通过基于面部识别后的Exex视频分析来检测常见的异常行为(包括面部消失的面部,旋转面,并在考试中与其他人替换)。为了建立这样的新型系统,我们克服了三个挑战。首先,我们发现了一种轻巧的方法来捕获考试视频流并实时分析它们。其次,我们利用每个学生的缩放窗口上显示的左角名称,并提出改进的OCR(光学角色识别)技术来自动收集具有动态位置的学生面孔的地面真相。第三,我们进行了几种实验比较和优化,以有效缩短教师PC所需的训练时间和测试时间。我们的评估表明,IEXAM可以实现高精度,实时面部检测90.4%,后验后面部识别率为98.4%,同时保持可接受的运行时性能。我们已经在https://github.com/vprlab/iexam上提供了IEXAM的源代码。

Online exams via video conference software like Zoom have been adopted in many schools due to COVID-19. While it is convenient, it is challenging for teachers to supervise online exams from simultaneously displayed student Zoom windows. In this paper, we propose iExam, an intelligent online exam monitoring and analysis system that can not only use face detection to assist invigilators in real-time student identification, but also be able to detect common abnormal behaviors (including face disappearing, rotating faces, and replacing with a different person during the exams) via a face recognition-based post-exam video analysis. To build such a novel system in its first kind, we overcome three challenges. First, we discover a lightweight approach to capturing exam video streams and analyzing them in real time. Second, we utilize the left-corner names that are displayed on each student's Zoom window and propose an improved OCR (optical character recognition) technique to automatically gather the ground truth for the student faces with dynamic positions. Third, we perform several experimental comparisons and optimizations to efficiently shorten the training and testing time required on teachers' PC. Our evaluation shows that iExam achieves high accuracy, 90.4% for real-time face detection and 98.4% for post-exam face recognition, while maintaining acceptable runtime performance. We have made iExam's source code available at https://github.com/VPRLab/iExam.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源