论文标题
CS $^2 $:图像和注释的可控且同时合成的人类干预措施
CS$^2$: A Controllable and Simultaneous Synthesizer of Images and Annotations with Minimal Human Intervention
论文作者
论文摘要
图像数据的贫困和相应的专家注释限制了AI诊断模型的训练能力,并可能抑制其性能。为了解决此类数据和标签稀缺性问题,已经开发了生成模型来增强培训数据集。先前提出的生成模型通常需要手动调整注释(例如分割掩码)或需要预先标记。但是,研究发现,这些基于标记的方法可以引起幻觉的伪影,这可能会误导下游临床任务,而手动调整可能是繁重和主观的。为了避免手动调整和预先标记,我们在这项研究中提出了一种新颖的可控和同时合成器(称为CS $^2 $),以同时生成逼真的图像和相应的注释。我们的CS $^2 $模型是使用COVID-19患者收集的高分辨率CT(HRCT)数据训练和验证的,以实现有效的感染分割,并以最少的人为干预。我们的贡献包括1)有条件的图像合成网络,该网络从参考CT图像和无监督分割掩码的结构信息中接收样式信息,以及2)相应的分割掩码合成网络,以自动分割这些合成的图像。我们对从COVID-19患者收集的HRCT扫描的实验研究表明,与以最新的培训和精心调节的方式相比,我们的CS $^2 $模型可以导致逼真的合成数据集和共同感染的有希望的分割结果。
The destitution of image data and corresponding expert annotations limit the training capacities of AI diagnostic models and potentially inhibit their performance. To address such a problem of data and label scarcity, generative models have been developed to augment the training datasets. Previously proposed generative models usually require manually adjusted annotations (e.g., segmentation masks) or need pre-labeling. However, studies have found that these pre-labeling based methods can induce hallucinating artifacts, which might mislead the downstream clinical tasks, while manual adjustment could be onerous and subjective. To avoid manual adjustment and pre-labeling, we propose a novel controllable and simultaneous synthesizer (dubbed CS$^2$) in this study to generate both realistic images and corresponding annotations at the same time. Our CS$^2$ model is trained and validated using high resolution CT (HRCT) data collected from COVID-19 patients to realize an efficient infections segmentation with minimal human intervention. Our contributions include 1) a conditional image synthesis network that receives both style information from reference CT images and structural information from unsupervised segmentation masks, and 2) a corresponding segmentation mask synthesis network to automatically segment these synthesized images simultaneously. Our experimental studies on HRCT scans collected from COVID-19 patients demonstrate that our CS$^2$ model can lead to realistic synthesized datasets and promising segmentation results of COVID infections compared to the state-of-the-art nnUNet trained and fine-tuned in a fully supervised manner.