论文标题
EMVLIGHT:紧急车辆分散路由和交通信号控制系统的多代理增强学习框架
EMVLight: a Multi-agent Reinforcement Learning Framework for an Emergency Vehicle Decentralized Routing and Traffic Signal Control System
论文作者
论文摘要
紧急车辆(EMV)在响应关键时期的呼叫中起着至关重要的作用,例如在城市地区发生医疗紧急情况和火灾爆发。现有的EMV调度方法通常会根据历史流量数据数据和设计流量信号相应优化路线;但是,我们仍然缺乏一种系统的方法来解决EMV路由和流量信号控制之间的耦合。在本文中,我们提出了EMVLIGHT,这是一个分散的加固学习(RL)框架,用于联合动态EMV路由和交通信号预先抢先。我们采用具有政策共享和空间折扣因素的多代理优势参与者 - 批评方法。该框架通过多级RL代理的创新设计和新型的基于压力的奖励功能来解决EMV导航和交通信号控制之间的耦合。提出的方法使EMVLIGHT能够学习网络级的合作交通信号相分化策略,这些策略不仅减少EMV旅行时间,而且还缩短了非EMV的旅行时间。基于仿真的实验表明,EMVLIGHT可使EMV旅行时间减少$ 42.6 \%$,以及与现有方法相比,$ 23.5 \%$短的平均旅行时间。
Emergency vehicles (EMVs) play a crucial role in responding to time-critical calls such as medical emergencies and fire outbreaks in urban areas. Existing methods for EMV dispatch typically optimize routes based on historical traffic-flow data and design traffic signal pre-emption accordingly; however, we still lack a systematic methodology to address the coupling between EMV routing and traffic signal control. In this paper, we propose EMVLight, a decentralized reinforcement learning (RL) framework for joint dynamic EMV routing and traffic signal pre-emption. We adopt the multi-agent advantage actor-critic method with policy sharing and spatial discounted factor. This framework addresses the coupling between EMV navigation and traffic signal control via an innovative design of multi-class RL agents and a novel pressure-based reward function. The proposed methodology enables EMVLight to learn network-level cooperative traffic signal phasing strategies that not only reduce EMV travel time but also shortens the travel time of non-EMVs. Simulation-based experiments indicate that EMVLight enables up to a $42.6\%$ reduction in EMV travel time as well as an $23.5\%$ shorter average travel time compared with existing approaches.