论文标题
迈向图像库的函数库,用于全局优化基准测试
Toward an ImageNet Library of Functions for Global Optimization Benchmarking
论文作者
论文摘要
鉴于选择算法和/或配置问题,黑框优化(BBO)问题的搜索地面特征(BBO)问题的知识提供了有价值的信息。探索性景观分析(ELA)模型在识别预定义的人类衍生特征并促进投资组合选择器以应对这些挑战方面取得了成功。与ELA方法不同,当前的研究建议将识别问题转变为图像识别问题,并有可能检测不含概念的机器驱动的景观特征。为此,我们介绍了景观图像的概念,这使我们能够每个基准函数生成图像实例,然后将分类挑战定位于多样化的函数数据集。我们将其作为有监督的多级图像识别问题来解决,并应用基本的人工神经网络模型来解决它。我们方法的功效在无噪声的BBOB和IOHPRILER基准测试套件上进行了数值验证。这一明显的成功学习是迈向自动化特征提取和局部结构的又一步,对BBO问题扣除。通过使用这种景观图像的定义,并利用图像识别算法的现有功能,我们预见了像Imagenet一样的功能库的构建,用于训练依靠机器驱动功能的通用检测器。
Knowledge of search-landscape features of BlackBox Optimization (BBO) problems offers valuable information in light of the Algorithm Selection and/or Configuration problems. Exploratory Landscape Analysis (ELA) models have gained success in identifying predefined human-derived features and in facilitating portfolio selectors to address those challenges. Unlike ELA approaches, the current study proposes to transform the identification problem into an image recognition problem, with a potential to detect conception-free, machine-driven landscape features. To this end, we introduce the notion of Landscape Images, which enables us to generate imagery instances per a benchmark function, and then target the classification challenge over a diverse generalized dataset of functions. We address it as a supervised multi-class image recognition problem and apply basic artificial neural network models to solve it. The efficacy of our approach is numerically validated on the noise free BBOB and IOHprofiler benchmarking suites. This evident successful learning is another step toward automated feature extraction and local structure deduction of BBO problems. By using this definition of landscape images, and by capitalizing on existing capabilities of image recognition algorithms, we foresee the construction of an ImageNet-like library of functions for training generalized detectors that rely on machine-driven features.