论文标题

对公共卫生干预措施的离散随机优化

Discrete Stochastic Optimization for Public Health Interventions with Constraints

论文作者

Li, Zewei, Spall, James C.

论文摘要

存在许多公共卫生威胁,激发了寻找最佳干预策略的需求。鉴于威胁的随机性(例如,大流行性流感,药物过量的发生以及与酒精相关威胁的普遍性的传播),确定性优化方法可能不合适。在本文中,我们实施了一种随机优化方法来解决2009 H1N1和Covid-19-Pandemics的各个方面,分别由开源的蒙特卡洛模拟,长笛和Covasim建模的疾病的传播。在不测试所有可能的选项的情况下,优化的目的是确定干预策略的最佳组合,从而导致对社会的经济损失最小。为了实现我们的目标,这份面向应用程序的论文使用基于递归模拟的优化算法的离散同时扰动随机近似方法(DSPSA)来更新疾病模拟软件中的输入参数,从而使输出迭代迭代地接近最小的经济损失。假设疾病传播的仿真模型(在我们的情况下为Covid-19的长笛和Covasim的长笛)是对正在研究的人群的准确表示,我们提出的基于模拟的策略为决策者提供了一种有力的工具,可以减轻任何流行病的潜在人类和经济损失。基本方法也适用于其他公共卫生问题,例如阿片类药物滥用和醉酒驾驶。

Many public health threats exist, motivating the need to find optimal intervention strategies. Given the stochastic nature of the threats (e.g., the spread of pandemic influenza, the occurrence of drug overdoses, and the prevalence of alcohol-related threats), deterministic optimization approaches may be inappropriate. In this paper, we implement a stochastic optimization method to address aspects of the 2009 H1N1 and the COVID-19 pandemics, with the spread of disease modeled by the open source Monte Carlo simulations, FluTE and Covasim, respectively. Without testing every possible option, the objective of the optimization is to determine the best combination of intervention strategies so as to result in minimal economic loss to society. To reach our objective, this application-oriented paper uses the discrete simultaneous perturbation stochastic approximation method (DSPSA), a recursive simulation-based optimization algorithm, to update the input parameters in the disease simulation software so that the output iteratively approaches minimal economic loss. Assuming that the simulation models for the spread of disease (FluTE for H1N1 and Covasim for COVID-19 in our case) are accurate representations for the population being studied, the simulation-based strategy we present provides decision makers a powerful tool to mitigate potential human and economic losses from any epidemic. The basic approach is also applicable in other public health problems, such as opioid abuse and drunk driving.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源