论文标题

基于GAN的高分辨率和视网膜层中的视网膜层分割

GAN-based Super-Resolution and Segmentation of Retinal Layers in Optical coherence tomography Scans

论文作者

Jeihouni, Paria, Dehzangi, Omid, Amireskandari, Annahita, Rezai, Ali, Nasrabadi, Nasser M.

论文摘要

在本文中,我们设计了一种基于生成的对抗网络(GAN)的解决方案,用于视网膜层的光学相干断层扫描(OCT)扫描的超分辨率和分割。 OCT已被确定为成像的非侵入性和廉价的方式,可发现潜在的生物标志物,以诊断和进展神经退行性疾病,例如阿尔茨海默氏病(AD)。当前的假设假设在OCT扫描中可分析的视网膜层的厚度可能是有效的生物标志物。作为逻辑上的第一步,这项工作集中在视网膜层分割的挑战性任务上,也集中在超级分辨率上,以提高清晰度和准确性。我们提出了一个基于GAN的分割模型,并评估将流行网络(即U-NET和RESNET)纳入GAN体系结构,并具有其他转置卷积和子像素卷积的块,以使从低分辨率将OCT图像从低分辨率上升到高分辨率的任务。我们还将骰子丢失纳入了额外的重建损失项,以提高该联合优化任务的性能。我们的最佳模型配置从经验上实现了0.867的骰子系数,MIOU为0.765。

In this paper, we design a Generative Adversarial Network (GAN)-based solution for super-resolution and segmentation of optical coherence tomography (OCT) scans of the retinal layers. OCT has been identified as a non-invasive and inexpensive modality of imaging to discover potential biomarkers for the diagnosis and progress determination of neurodegenerative diseases, such as Alzheimer's Disease (AD). Current hypotheses presume the thickness of the retinal layers, which are analyzable within OCT scans, can be effective biomarkers. As a logical first step, this work concentrates on the challenging task of retinal layer segmentation and also super-resolution for higher clarity and accuracy. We propose a GAN-based segmentation model and evaluate incorporating popular networks, namely, U-Net and ResNet, in the GAN architecture with additional blocks of transposed convolution and sub-pixel convolution for the task of upscaling OCT images from low to high resolution by a factor of four. We also incorporate the Dice loss as an additional reconstruction loss term to improve the performance of this joint optimization task. Our best model configuration empirically achieved the Dice coefficient of 0.867 and mIOU of 0.765.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源