论文标题

基本光谱和正则功能划线的光谱映射定理

Spectral mapping theorems for essential spectra and regularized functional calculi

论文作者

Oliva-Maza, Jesús

论文摘要

Gramsch and Lay [10] gave spectral mapping theorems for the Dunford-Taylor calculus of a closed linear operator $T$, $$\widetildeσ_i(f(T)) = f(\widetildeσ_i(T)), $$ for several extended essential spectra $\widetildeσ_i$.在这项工作中,我们扩展了Haase [12,13]引入的自然功能演算的这种定理。我们使用双层操作员的模型案例。此处介绍的证据是通用的,并且对类似的功能演算有效。

Gramsch and Lay [10] gave spectral mapping theorems for the Dunford-Taylor calculus of a closed linear operator $T$, $$\widetildeσ_i(f(T)) = f(\widetildeσ_i(T)), $$ for several extended essential spectra $\widetildeσ_i$. In this work, we extend such theorems for the natural functional calculus introduced by Haase [12,13]. We use the model case of bisectorial operators. The proofs presented here are generic, and are valid for similar functional calculus.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源