论文标题
百吉饼:评估图形神经网络解释的基准
BAGEL: A Benchmark for Assessing Graph Neural Network Explanations
论文作者
论文摘要
解释机器学习决策的问题是一个经过充分研究和重要的问题。我们对一种特定类型的机器学习模型感兴趣,该模型涉及称为图形神经网络的图形数据。由于缺乏公认的基准,评估图形神经网络(GNN)的可解释性方法(GNN)是具有挑战性的。鉴于GNN模型,存在几种可解释性方法来解释具有多种(有时是冲突)评估方法的GNN模型。在本文中,我们提出了一个基准,用于评估称为Bagel的GNN的解释性方法。在百吉饼中,我们首先提出了四种不同的GNN解释评估制度 - 1)忠诚,2)稀疏性,3)正确性。 4)合理性。我们在现有文献中调和多个评估指标,并涵盖了各种概念以进行整体评估。我们的图数据集范围从引文网络,文档图,到分子和蛋白质的图。我们对四个GNN模型和九个事后解释方法进行了广泛的经验研究,以实现节点和图形分类任务。我们打开了基准和参考实现,并在https://github.com/mandeep-rathee/bagel-benchmark上提供它们。
The problem of interpreting the decisions of machine learning is a well-researched and important. We are interested in a specific type of machine learning model that deals with graph data called graph neural networks. Evaluating interpretability approaches for graph neural networks (GNN) specifically are known to be challenging due to the lack of a commonly accepted benchmark. Given a GNN model, several interpretability approaches exist to explain GNN models with diverse (sometimes conflicting) evaluation methodologies. In this paper, we propose a benchmark for evaluating the explainability approaches for GNNs called Bagel. In Bagel, we firstly propose four diverse GNN explanation evaluation regimes -- 1) faithfulness, 2) sparsity, 3) correctness. and 4) plausibility. We reconcile multiple evaluation metrics in the existing literature and cover diverse notions for a holistic evaluation. Our graph datasets range from citation networks, document graphs, to graphs from molecules and proteins. We conduct an extensive empirical study on four GNN models and nine post-hoc explanation approaches for node and graph classification tasks. We open both the benchmarks and reference implementations and make them available at https://github.com/Mandeep-Rathee/Bagel-benchmark.