论文标题

量子de Sitter空间的有限特征

Finite Features of Quantum De Sitter Space

论文作者

Anninos, Dionysios, Galante, Damián A., Mühlmann, Beatrix

论文摘要

我们考虑量子de Sitter时空的自由度。从Lorentzian和Euclidean的角度研究了这个问题。从洛伦兹的角度来看,我们计算静态斑块de de Sitter Horizo​​n的动力学特性。将这些与黑洞的动态特征进行比较。我们指出的是暗示着Sitter Horizo​​n的非标准热行为的差异。我们确定在渐近广告$ _2 \ times s^2 $空间和ds $ _4 $内饰之间插值的几何形状与无效的能量条件兼容,尽管不降低了径向的降低径向尺寸为$ s^2 $。渐近广告的假定全息二二$ _2 $时空由有限的自由度组成。从欧几里得的角度来看,我们考虑了紧凑型歧管上场的重力路径积分。在二维中,我们回顾了Polchinski对liouville理论的首先定位,并提出了序列般的liouville理论的超对称扩展,该理论表现出超对称性定位。我们推测,欧几里得重力路径积分的定位反映了量子界宇宙中有限数量的自由度。

We consider degrees of freedom for a quantum de Sitter spacetime. The problem is studied from both a Lorentzian and a Euclidean perspective. From a Lorentzian perspective, we compute dynamical properties of the static patch de Sitter horizon. These are compared to dynamical features of black holes. We point out differences suggestive of non-standard thermal behaviour for the de Sitter horizon. We establish that geometries interpolating between an asymptotically AdS$_2 \times S^2$ space and a dS$_4$ interior are compatible with the null energy condition, albeit with a non-standard decreasing radial size of $S^2$. The putative holographic dual of an asymptotic AdS$_2$ spacetime is comprised of a finite number of degrees of freedom. From a Euclidean perspective we consider the gravitational path integral for fields over compact manifolds. In two-dimensions, we review Polchinski's BRST localisation of Liouville theory and propose a supersymmetric extension of timelike Liouville theory which exhibits supersymmetric localisation. We speculate that localisation of the Euclidean gravitational path integral is a reflection of a finite number of degrees of freedom in a quantum de Sitter universe.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源