论文标题
没有代表就没有插补
No imputation without representation
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
By filling in missing values in datasets, imputation allows these datasets to be used with algorithms that cannot handle missing values by themselves. However, missing values may in principle contribute useful information that is lost through imputation. The missing-indicator approach can be used in combination with imputation to instead represent this information as a part of the dataset. There are several theoretical considerations why missing-indicators may or may not be beneficial, but there has not been any large-scale practical experiment on real-life datasets to test this question for machine learning predictions. We perform this experiment for three imputation strategies and a range of different classification algorithms, on the basis of twenty real-life datasets. In a follow-up experiment, we determine attribute-specific missingness thresholds for each classifier above which missing-indicators are more likely than not to increase classification performance. And in a second follow-up experiment, we evaluate numerical imputation of one-hot encoded categorical attributes. We reach the following conclusions. Firstly, missing-indicators generally increase classification performance. Secondly, with missing-indicators, nearest neighbour and iterative imputation do not lead to better performance than simple mean/mode imputation. Thirdly, for decision trees, pruning is necessary to prevent overfitting. Fourthly, the thresholds above which missing-indicators are more likely than not to improve performance are lower for categorical attributes than for numerical attributes. Lastly, mean imputation of numerical attributes preserves some of the information from missing values. Consequently, when not using missing-indicators it can be advantageous to apply mean imputation to one-hot encoded categorical attributes instead of mode imputation.