论文标题

为什么不能轻易忘记患者数据?

Why patient data cannot be easily forgotten?

论文作者

Su, Ruolin, Liu, Xiao, Tsaftaris, Sotirios A.

论文摘要

数据保护法规中规定的权利允许患者要求数据持有人消除有关其信息的知识。随着AI在数据上学习的出现,人们可以想象,此类权利可以要求忘记AI模型中患者数据知识的要求。但是,忘记来自AI模型的患者成像数据仍然是一个爆炸案。在本文中,我们研究了患者数据对模型性能的影响,并为患者的数据提出了两个假设:他们是常见的,并且与其他患者相似,或者形成边缘病例,即独特且罕见的病例。我们表明,不可能轻松地忘记患者数据。我们提出了一种有针对性的遗忘方法,以执行患者遗忘。基准自动化心脏诊断挑战数据集的广泛实验展示了所提出的目标遗忘方法的性能,而不是最先进的方法。

Rights provisioned within data protection regulations, permit patients to request that knowledge about their information be eliminated by data holders. With the advent of AI learned on data, one can imagine that such rights can extent to requests for forgetting knowledge of patient's data within AI models. However, forgetting patients' imaging data from AI models, is still an under-explored problem. In this paper, we study the influence of patient data on model performance and formulate two hypotheses for a patient's data: either they are common and similar to other patients or form edge cases, i.e. unique and rare cases. We show that it is not possible to easily forget patient data. We propose a targeted forgetting approach to perform patient-wise forgetting. Extensive experiments on the benchmark Automated Cardiac Diagnosis Challenge dataset showcase the improved performance of the proposed targeted forgetting approach as opposed to a state-of-the-art method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源