论文标题

ESA-ARIEL数据挑战神经2022:从下一代望远镜中推断外科行星的物理特性

ESA-Ariel Data Challenge NeurIPS 2022: Inferring Physical Properties of Exoplanets From Next-Generation Telescopes

论文作者

Yip, Kai Hou, Waldmann, Ingo P., Changeat, Quentin, Morvan, Mario, Al-Refaie, Ahmed F., Edwards, Billy, Nikolaou, Nikolaos, Tsiaras, Angelos, de Oliveira, Catarina Alves, Lagage, Pierre-Olivier, Jenner, Clare, Cho, James Y-K., Thiyagalingam, Jeyan, Tinetti, Giovanna

论文摘要

在我们自己的太阳系以外的行星或简单的外星行星的研究从根本上讲是一种了解我们在宇宙中的地位的巨大追求。在过去的二十年中,发现重新定义了我们对行星的理解,并帮助我们理解了自己的地球的独特性。近年来,重点已从行星检测转变为行星表征,其中使用基于蒙特卡洛的方法从望远镜观测中推断出关键的行星特性。但是,基于抽样的方法的效率受到下一代望远镜的高分辨率观察数据的压力,例如James Webb Space望远镜和Ariel Space Mission。我们很高兴宣布接受Ariel ML Data Challenge 2022的接受,这是Neurips竞赛曲目的一部分。这一挑战的目的是确定一种可靠且可扩展的方法来执行行星表征。根据所选轨道,参与者的任务是提供四分位数估计值或关键行星属性的近似分布。为此,已经从ESA Ariel Space Mission的官方模拟器中生成了合成的光谱数据集。比赛的目的是三倍。 1)为比较和推进有条件密度估计方法的具有挑战性的应用。 2)为光谱数据的可靠,有效分析提供了宝贵的贡献,使天文学家能够更好地了解行星人口统计学,3)促进ML与超级行星科学之间的相互作用。比赛从6月15日开放,直到10月初,所有技能水平的参与者都受到欢迎!

The study of extra-solar planets, or simply, exoplanets, planets outside our own Solar System, is fundamentally a grand quest to understand our place in the Universe. Discoveries in the last two decades have re-defined our understanding of planets, and helped us comprehend the uniqueness of our very own Earth. In recent years the focus has shifted from planet detection to planet characterisation, where key planetary properties are inferred from telescope observations using Monte Carlo-based methods. However, the efficiency of sampling-based methodologies is put under strain by the high-resolution observational data from next generation telescopes, such as the James Webb Space Telescope and the Ariel Space Mission. We are delighted to announce the acceptance of the Ariel ML Data Challenge 2022 as part of the NeurIPS competition track. The goal of this challenge is to identify a reliable and scalable method to perform planetary characterisation. Depending on the chosen track, participants are tasked to provide either quartile estimates or the approximate distribution of key planetary properties. To this end, a synthetic spectroscopic dataset has been generated from the official simulators for the ESA Ariel Space Mission. The aims of the competition are three-fold. 1) To offer a challenging application for comparing and advancing conditional density estimation methods. 2) To provide a valuable contribution towards reliable and efficient analysis of spectroscopic data, enabling astronomers to build a better picture of planetary demographics, and 3) To promote the interaction between ML and exoplanetary science. The competition is open from 15th June and will run until early October, participants of all skill levels are more than welcomed!

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源