论文标题
Conviqt:对比度视频质量估计器
CONVIQT: Contrastive Video Quality Estimator
论文作者
论文摘要
感知视频质量评估(VQA)是许多流和视频共享平台的组成部分。在这里,我们以自我监督的方式考虑学习具有感知相关的视频质量表示的问题。失真类型识别和降解水平确定被用作辅助任务,以训练一个深度学习模型,该模型包含提取空间特征的深卷积神经网络(CNN),以及捕获时间信息的经常性单元。该模型是使用对比损失训练的,因此我们将此训练框架和结果模型称为对比度质量估计器(Conviqt)。在测试过程中,训练有素的模型的重量被冷冻,并且线性回归器将学习的功能映射到No-Reference(NR)设置中的质量得分。我们通过分析模型预测与地面真相质量评级之间的相关性,对多个VQA数据库进行全面评估,并与最先进的NR-NR-VQA模型相比,即使没有在这些数据库上训练它,也可以实现竞争性能。我们的消融实验表明,学到的表示形式高度鲁棒,并且在合成和现实的扭曲中都很好地概括了。我们的结果表明,可以使用自我监督的学习来获得具有感知轴承的引人注目的表示。这项工作中使用的实现已在https://github.com/pavancm/conviqt上提供。
Perceptual video quality assessment (VQA) is an integral component of many streaming and video sharing platforms. Here we consider the problem of learning perceptually relevant video quality representations in a self-supervised manner. Distortion type identification and degradation level determination is employed as an auxiliary task to train a deep learning model containing a deep Convolutional Neural Network (CNN) that extracts spatial features, as well as a recurrent unit that captures temporal information. The model is trained using a contrastive loss and we therefore refer to this training framework and resulting model as CONtrastive VIdeo Quality EstimaTor (CONVIQT). During testing, the weights of the trained model are frozen, and a linear regressor maps the learned features to quality scores in a no-reference (NR) setting. We conduct comprehensive evaluations of the proposed model on multiple VQA databases by analyzing the correlations between model predictions and ground-truth quality ratings, and achieve competitive performance when compared to state-of-the-art NR-VQA models, even though it is not trained on those databases. Our ablation experiments demonstrate that the learned representations are highly robust and generalize well across synthetic and realistic distortions. Our results indicate that compelling representations with perceptual bearing can be obtained using self-supervised learning. The implementations used in this work have been made available at https://github.com/pavancm/CONVIQT.