论文标题
相位场电化学机械配方,用于预测全稳态电池中Li-电解质界面的空隙演化
A phase field electro-chemo-mechanical formulation for predicting void evolution at the Li-electrolyte interface in all-solid-state batteries
论文作者
论文摘要
我们提出了一种机械理论,用于预测全稳态电池电池的电荷和放电期间LI金属电极中的空隙演化。开发了相位场公式以建模空位歼灭和成核,并能够跟踪void-li金属界面。这与LI变形的粘塑性描述相结合,以捕获蠕变效应以及质传质制剂,以解释替代(散装和表面)Li扩散和电流驱动的通量。此外,我们结合了电极与固体电解质之间的相互作用,从而解决了两个域中的耦合电化学问题。这使得可以预测电解质电流分布,从而预测局部电流“热点”的出现,这些斑点是树突形成和细胞死亡的前体。理论框架是数值实施的,并进行了单个和多个空隙案例研究,以预测空隙和当前热点的演变,这是施加压力,材料特性和电荷(幅度和周期历史)的函数。对于镀层和剥离,洞察力都可以在散装扩散,液体溶解和沉积,蠕变以及空缺的成核和an灭之间获得相互作用。该模型被证明可以捕获主要的实验观察结果,不仅包括电解质电流和空隙形态的关键特征,还包括对应用电流的敏感性,压力在增加电极 - 电解质电解质接触面积中的作用以及蠕变过度过度空位扩散的优势。
We present a mechanistic theory for predicting void evolution in the Li metal electrode during the charge and discharge of all-solid-state battery cells. A phase field formulation is developed to model vacancy annihilation and nucleation, and to enable the tracking of the void-Li metal interface. This is coupled with a viscoplastic description of Li deformation, to capture creep effects, and a mass transfer formulation accounting for substitutional (bulk and surface) Li diffusion and current-driven flux. Moreover, we incorporate the interaction between the electrode and the solid electrolyte, resolving the coupled electro-chemical-mechanical problem in both domains. This enables predicting the electrolyte current distribution and thus the emergence of local current 'hot spots', which act as precursors for dendrite formation and cell death. The theoretical framework is numerically implemented, and single and multiple void case studies are carried out to predict the evolution of voids and current hot spots as a function of the applied pressure, material properties and charge (magnitude and cycle history). For both plating and stripping, insight is gained into the interplay between bulk diffusion, Li dissolution and deposition, creep, and the nucleation and annihilation of vacancies. The model is shown to capture the main experimental observations, including not only key features of electrolyte current and void morphology but also the sensitivity to the applied current, the role of pressure in increasing the electrode-electrolyte contact area, and the dominance of creep over vacancy diffusion.