论文标题

ENS-10:用于后处理合奏天气预报的数据集

ENS-10: A Dataset For Post-Processing Ensemble Weather Forecasts

论文作者

Ashkboos, Saleh, Huang, Langwen, Dryden, Nikoli, Ben-Nun, Tal, Dueben, Peter, Gianinazzi, Lukas, Kummer, Luca, Hoefler, Torsten

论文摘要

后处理集合预测系统可以提高天气预测的可靠性,尤其是对于极端事件预测。近年来,已经开发出不同的机器学习模型来提高天气后处理的质量。但是,这些模型需要一个全面的天气模拟数据集,以产生高临界结果,这以高计算成本产生。本文介绍了ENS-10数据集,由十个合奏成员组成20年(1998-2017)。合奏成员是通过扰动数值天气模拟来捕获地球混乱行为而产生的。为了代表大气的三维状态,ENS-10在11个不同的压力水平下提供了最相关的大气变量,而表面则以0.5度的分辨率为预测提前时间t = 0,24和48小时(每周两个数据点)。我们提出了ENS-10预测校正任务,以通过集合后处理以48小时的交付时间提高预测质量。我们提供一组基线,并比较他们在纠正三个重要大气变量的预测方面的技能。此外,我们衡量了使用数据集改善对极端天气事件的预​​测的基准技巧。 ENS-10数据集可在创意共享归因4.0国际(CC By 4.0)许可下获得。

Post-processing ensemble prediction systems can improve the reliability of weather forecasting, especially for extreme event prediction. In recent years, different machine learning models have been developed to improve the quality of weather post-processing. However, these models require a comprehensive dataset of weather simulations to produce high-accuracy results, which comes at a high computational cost to generate. This paper introduces the ENS-10 dataset, consisting of ten ensemble members spanning 20 years (1998-2017). The ensemble members are generated by perturbing numerical weather simulations to capture the chaotic behavior of the Earth. To represent the three-dimensional state of the atmosphere, ENS-10 provides the most relevant atmospheric variables at 11 distinct pressure levels and the surface at 0.5-degree resolution for forecast lead times T=0, 24, and 48 hours (two data points per week). We propose the ENS-10 prediction correction task for improving the forecast quality at a 48-hour lead time through ensemble post-processing. We provide a set of baselines and compare their skill at correcting the predictions of three important atmospheric variables. Moreover, we measure the baselines' skill at improving predictions of extreme weather events using our dataset. The ENS-10 dataset is available under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源