论文标题
LIDL:使用近似可能性的局部内在维度估计
LIDL: Local Intrinsic Dimension Estimation Using Approximate Likelihood
论文作者
论文摘要
估计数据分布的局部固有维度的大多数现有方法不能很好地扩展到高维数据。他们中的许多人依靠非参数最近的邻居方法,该方法受到维度诅咒的痛苦。我们试图通过提出一种解决问题的新方法来解决这一挑战:使用近似可能性(LIDL)的局部内在维度估计。我们的方法依赖于任意密度估计方法作为子例程,因此试图通过利用参数神经方法的最新进展来避免维度挑战。我们仔细研究了所提出方法的经验特性,将其与我们的理论预测进行了比较,并表明LIDL在此问题的标准基准上产生竞争结果,并将其扩展到数千个维度。更重要的是,我们预计通过密度估计文献的持续进展,这种方法可以进一步改善。
Most of the existing methods for estimating the local intrinsic dimension of a data distribution do not scale well to high-dimensional data. Many of them rely on a non-parametric nearest neighbors approach which suffers from the curse of dimensionality. We attempt to address that challenge by proposing a novel approach to the problem: Local Intrinsic Dimension estimation using approximate Likelihood (LIDL). Our method relies on an arbitrary density estimation method as its subroutine and hence tries to sidestep the dimensionality challenge by making use of the recent progress in parametric neural methods for likelihood estimation. We carefully investigate the empirical properties of the proposed method, compare them with our theoretical predictions, and show that LIDL yields competitive results on the standard benchmarks for this problem and that it scales to thousands of dimensions. What is more, we anticipate this approach to improve further with the continuing advances in the density estimation literature.