论文标题
Maxwell-Stefan扩散方程和灰尘气模型的多尺度热力学概括
A multiscale thermodynamic generalization of Maxwell-Stefan diffusion equations and of the dusty gas model
论文作者
论文摘要
尽管混合物理论很长一段时间以来一直是非平衡热力学和工程的一部分,但它远非完整。在机械平衡的情况下(仅发生类似扩散的过程),它的配方良好和测试,但如何正确描述具有多个独立速度流动的均质混合物的问题,这些速度仍然具有某种惯性(在达到机械平衡之前达到机械平衡之前)。此外,混合物在放松以达到共同价值之前可以具有几个温度。在本文中,我们得出了一种与电磁场相互作用的哈密顿力学混合物理论。然后将所得的进化方程减少到只有一个动量(经典不可逆的热力学),从而对Maxwell-Stefan扩散方程进行了概括。在下一步中,我们将该描述简化为机械平衡(无动量),并得出了尘土飞扬气体模型的非等温变体。这些还原的方程是通过数值求解的,我们说明了效率分析的结果,显示了浓度细胞效率的位置。最后,混合理论将成分之间的温度差异确定为可能的新系数来源。为了清楚起见,我们将演示文稿限制为二进制混合物的情况。概括很简单。
Despite the fact that the theory of mixtures has been part of non-equilibrium thermodynamics and engineering for a long time, it is far from complete. While it is well formulated and tested in the case of mechanical equilibrium (where only diffusion-like processes take place), the question how to properly describe homogeneous mixtures that flow with multiple independent velocities that still possess some inertia (before mechanical equilibrium is reached) is still open. Moreover, the mixtures can have several temperatures before they relax to a common value. In this paper, we derive a theory of mixtures from Hamiltonian mechanics in interaction with electromagnetic fields. The resulting evolution equations are then reduced to the case with only one momentum (classical irreversible thermodynamics), providing a generalization of the Maxwell-Stefan diffusion equations. In a next step, we reduce that description to the mechanical equilibrium (no momentum) and derive a non-isothermal variant of the dusty gas model. These reduced equations are solved numerically, and we illustrate the results on efficiency analysis, showing where in a concentration cell efficiency is lost. Finally, the theory of mixtures identifies the temperature difference between constituents as a possible new source of the Soret coefficient. For the sake of clarity, we restrict the presentation to the case of binary mixtures; the generalization is straightforward.