论文标题

基于森林基于森林的EMG信号分类,并具有随机差异高斯噪声增强的低音量数据集

Decision Forest Based EMG Signal Classification with Low Volume Dataset Augmented with Random Variance Gaussian Noise

论文作者

Gunasar, Tekin, Rekesh, Alexandra, Nair, Atul, King, Penelope, Markova, Anastasiya, Zhang, Jiaqi, Tate, Isabel

论文摘要

肌电图信号可以通过机器学习模型用作训练数据,以对各种手势进行分类。我们试图制作一个模型,该模型可以用有限数量的样本对六个不同的手势进行分类,这些样本可以很好地向更广泛的受众介绍,同时比较我们的功能提取结果对模型准确性的效果与其他更常规的方法(例如在信号的通道上使用AR参数在滑动窗口上使用AR参数)。我们诉诸于一组更基本的方法,例如在信号上使用随机界限,但是渴望在正在进行EMG分类的在线环境中携带的功能,而不是使用更复杂的方法,例如使用傅立叶变换。为了增加我们有限的训练数据,我们使用了一种称为抖动的标准技术,在该技术中,以通道的方式将随机噪声添加到每个观察结果中。一旦使用上述方法生产了所有数据集后,我们就进行了随机森林和XGBoost的网格搜索,以最终创建高精度模型。出于人类计算机界面的目的,EMG信号的高精度分类对于它们的功能尤为重要,并且鉴于在大容量中积累任何形式的生物医学数据的困难和成本,具有较低量的高质量样品的技术具有相关性较低的特征提取方法,可以在线应用程序中携带,这是有价值的。

Electromyography signals can be used as training data by machine learning models to classify various gestures. We seek to produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience while comparing the effect of our feature extraction results on model accuracy to other more conventional methods such as the use of AR parameters on a sliding window across the channels of a signal. We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting where EMG classification is being conducted, as opposed to more complicated methods such as the use of the Fourier Transform. To augment our limited training data, we used a standard technique, known as jitter, where random noise is added to each observation in a channel wise manner. Once all datasets were produced using the above methods, we performed a grid search with Random Forest and XGBoost to ultimately create a high accuracy model. For human computer interface purposes, high accuracy classification of EMG signals is of particular importance to their functioning and given the difficulty and cost of amassing any sort of biomedical data in a high volume, it is valuable to have techniques that can work with a low amount of high-quality samples with less expensive feature extraction methods that can reliably be carried out in an online application.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源