论文标题

评估合理使用数据驱动决策算法的有效性观点

A Validity Perspective on Evaluating the Justified Use of Data-driven Decision-making Algorithms

论文作者

Coston, Amanda, Kawakami, Anna, Zhu, Haiyi, Holstein, Ken, Heidari, Hoda

论文摘要

最近的研究越来越多地质疑在复杂的现实世界任务中使用预测工具的适当性。虽然越来越多的工作探索了改善这些工具中价值一致性的方法,但相对较少的工作涉及使用这些工具的基本合理性的关注点。这项工作旨在将有效性考虑到有关是否以及如何在高风险域中构建数据驱动算法的审议中心。为此,我们将关键概念从有效性理论转化为预测算法。我们将有效性的视角应用于问题制定和数据问题中的共同挑战,这些问题危害了使用预测算法并将这些挑战与围绕有效性的社会科学论述联系起来的合理性。我们的跨学科博览会阐明了这些概念如何适用于算法决策背景。我们展示了这些有效性考虑如何将旨在促进和记录有关预测任务合法性和数据适用性的一系列高级问题提炼成一系列高级问题。

Recent research increasingly brings to question the appropriateness of using predictive tools in complex, real-world tasks. While a growing body of work has explored ways to improve value alignment in these tools, comparatively less work has centered concerns around the fundamental justifiability of using these tools. This work seeks to center validity considerations in deliberations around whether and how to build data-driven algorithms in high-stakes domains. Toward this end, we translate key concepts from validity theory to predictive algorithms. We apply the lens of validity to re-examine common challenges in problem formulation and data issues that jeopardize the justifiability of using predictive algorithms and connect these challenges to the social science discourse around validity. Our interdisciplinary exposition clarifies how these concepts apply to algorithmic decision making contexts. We demonstrate how these validity considerations could distill into a series of high-level questions intended to promote and document reflections on the legitimacy of the predictive task and the suitability of the data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源