论文标题
代数的模式理论作为广义对称性
Algebraic Theory of Patterns as Generalized Symmetries
论文作者
论文摘要
我们概括了对称群体的确切预测性规律性,从而提供了模式的代数理论,该理论是从未来对等的核心原则中构建的。对于完全差异的一维系统中的拓扑模式,未来的等效性独特地指定了最小的半毒剂。我们演示了后者及其半群代数如何将翻译对称性概括为部分和隐藏的对称性。这种概括不如先前考虑的那么简单。不过,在这里,我们阐明了根本的挑战。未来对等的随机形式,称为预测等效性,捕获了拓扑模式支持的不同统计模式。最后,我们展示了如何将未来等价的本地版本用于捕获时空中的模式。在移动更高维度时,它没有独特的局部方法,我们详细介绍了两个捕获时空模式不同方面的局部表示。未来等价的先前开发的本地时空变体可将模式捕获为较高维度的普遍对称性,但我们表明这种表示并不是其时空模式的忠实生成器。这激发了我们引入忠实发电机的当地表示,但我们证明了它不再捕获广义的时空对称性。该理论完全基于未来的等效性,定义并量化了各种古典领域理论的模式。
We generalize the exact predictive regularity of symmetry groups to give an algebraic theory of patterns, building from a core principle of future equivalence. For topological patterns in fully-discrete one-dimensional systems, future equivalence uniquely specifies a minimal semiautomaton. We demonstrate how the latter and its semigroup algebra generalizes translation symmetry to partial and hidden symmetries. This generalization is not as straightforward as previously considered. Here, though, we clarify the underlying challenges. A stochastic form of future equivalence, known as predictive equivalence, captures distinct statistical patterns supported on topological patterns. Finally, we show how local versions of future equivalence can be used to capture patterns in spacetime. As common when moving to higher dimensions, there is not a unique local approach, and we detail two local representations that capture different aspects of spacetime patterns. A previously-developed local spacetime variant of future equivalence captures patterns as generalized symmetries in higher dimensions, but we show this representation is not a faithful generator of its spacetime patterns. This motivates us to introduce a local representation that is a faithful generator, but we demonstrate that it no longer captures generalized spacetime symmetries. Taken altogether, building on future equivalence, the theory defines and quantifies patterns present in a wide range of classical field theories.