论文标题
异常和对称分数
Anomalies and Symmetry Fractionalization
论文作者
论文摘要
我们研究普通的,零形式的对称$ g $及其在具有单一形式对称$γ$的系统中的异常。在具有单色对称性的理论中,$ g $在带电的线路运算符上的作用尚未完全确定,需要指定其他数据(分数化类别)。如果该理论具有涉及$γ$的异常,则分数化类别的不同选择可能会导致$ g $的异常值不同。因此,普通对称性$ g $的't Hooft异常的计算通常需要首先发现物理系统的单一形式对称$γ$。我们表明,由于扭曲的仪表变换移动分数化类别,因此可以通过扭曲的量规变换来实现$ g $的异常值的多重值。我们在QCD理论中以各种维度说明了这些想法。我们成功地将$ 2+1d $量规的时间反向对称性的异常匹配,跨不同的分数化类别,与以前对这种强烈耦合理论的红外阶段的猜想,还提供了这些建议的新检查。我们对有关二维伴随QCD的最新建议进行一致性检查,并介绍有关轴向$ \ Mathbb {z} _ {2n} $ Symmetry in $ 3+1d $ $ {\ cal n} = 1 $ super-yang-super-yang-mills的新结果。最后,我们研究了类似于QCD的理论的2组对称性的分数化类别,并以$ 2+1d $ $ \ $ \ Mathbb {z} _2 $ gauge理论为$ 2+1d $ $ \ $ \ Mathbb。
We study ordinary, zero-form symmetry $G$ and its anomalies in a system with a one-form symmetry $Γ$. In a theory with one-form symmetry, the action of $G$ on charged line operators is not completely determined, and additional data, a fractionalization class, needs to be specified. Distinct choices of a fractionalization class can result in different values for the anomalies of $G$ if the theory has an anomaly involving $Γ$. Therefore, the computation of the 't Hooft anomaly for an ordinary symmetry $G$ generally requires first discovering the one-form symmetry $Γ$ of the physical system. We show that the multiple values of the anomaly for $G$ can be realized by twisted gauge transformations, since twisted gauge transformations shift fractionalization classes. We illustrate these ideas in QCD theories in diverse dimensions. We successfully match the anomalies of time-reversal symmetries in $2+1d$ gauge theories, across the different fractionalization classes, with previous conjectures for the infrared phases of such strongly coupled theories, and also provide new checks of these proposals. We perform consistency checks of recent proposals about two-dimensional adjoint QCD and present new results about the anomaly of the axial $\mathbb{Z}_{2N}$ symmetry in $3+1d$ ${\cal N}=1$ super-Yang-Mills. Finally, we study fractionalization classes that lead to 2-group symmetry, both in QCD-like theories, and in $2+1d$ $\mathbb{Z}_2$ gauge theory.