论文标题
长尾且细粒度的皮肤病变图像的分布外检测
Out-of-Distribution Detection for Long-tailed and Fine-grained Skin Lesion Images
论文作者
论文摘要
近年来,自动化方法迅速发展了皮肤病变诊断和分类的方法。由于此类系统在诊所中的部署越来越多,因此很重要的是,开发一个更健壮的系统来针对各种分布(OOD)样品(未知的皮肤病变和状况)。但是,当前对皮肤病变分类训练的深度学习模型倾向于将这些OOD样品错误地分类为他们学习的皮肤病变类别之一。为了解决这个问题,我们提出了一种简单而战略的方法,可以改善OOD检测性能,同时维持已知的皮肤病变类别的多类分类精度。要指定,这种方法建立在皮肤病变图像的长尾且细粒度检测任务的现实情况之上。通过这种方法,1)首先,我们针对中间和尾巴之间的混合,以解决长尾问题。 2)后来,我们将上述混合策略与原型学习结合在一起,以解决数据集的细粒度。本文的独特贡献是两倍,这是通过广泛的实验证明的。首先,我们提出了针对皮肤病变的OOD任务的现实问题。其次,我们提出了一种针对问题设置的长尾且细粒度方面的方法,以提高OOD性能。
Recent years have witnessed a rapid development of automated methods for skin lesion diagnosis and classification. Due to an increasing deployment of such systems in clinics, it has become important to develop a more robust system towards various Out-of-Distribution(OOD) samples (unknown skin lesions and conditions). However, the current deep learning models trained for skin lesion classification tend to classify these OOD samples incorrectly into one of their learned skin lesion categories. To address this issue, we propose a simple yet strategic approach that improves the OOD detection performance while maintaining the multi-class classification accuracy for the known categories of skin lesion. To specify, this approach is built upon a realistic scenario of a long-tailed and fine-grained OOD detection task for skin lesion images. Through this approach, 1) First, we target the mixup amongst middle and tail classes to address the long-tail problem. 2) Later, we combine the above mixup strategy with prototype learning to address the fine-grained nature of the dataset. The unique contribution of this paper is two-fold, justified by extensive experiments. First, we present a realistic problem setting of OOD task for skin lesion. Second, we propose an approach to target the long-tailed and fine-grained aspects of the problem setting simultaneously to increase the OOD performance.