论文标题
机器教学的黑盒概括
Black-box Generalization of Machine Teaching
论文作者
论文摘要
假设预言最大化了主动学习的假设更新,以找到那些所需的未标记数据。一个固有的假设是,这种学习方式可以将这些更新得出最佳假设。但是,如果这些增量更新是负面且无序的,则可能无法保证其收敛性。在本文中,我们介绍了一个黑盒教学假设$ h^\ MATHCAL {t} $,采用更紧密的术语$ \ left(1+ \ Mathcal {f}^{\ Mathcal {t Mathcal {t}}}}(\ wideHat {h wideHat {h}从理论上讲,我们证明,在这一教学假设的指导下,学习者可以比那些未从教师那里获得任何指导的未受过教育的学习者融合到更严格的概括错误和标签的复杂性:1)概括性错误上限可以从$ R(H^*)+4Δ_{T-1} $降低。 $(H^{\ Mathcal {t}})+2δ_{t-1} $,和2)标签复杂性上限可以从$4θ\ left(tr(h^{*})+2o(h^{*})+2o(\ sqrt {t} {t})\右)$ 2o(h^{*})$ 2o(\ sqrt {t})$降至左右$ 2TH(}+the左右(2) o(\ sqrt {t})\ right)$。要严格对我们的假设,当$ h^\ mathcal {t} $松散近似$ h^*$时,首先提出了教学的自我改善。反对学习,我们进一步考虑了两种教学场景:教授白盒和黑箱学习者。实验验证了这一想法并显示出比基本的积极学习策略(例如iWal,iwal-D等)更好的概括性能。
Hypothesis-pruning maximizes the hypothesis updates for active learning to find those desired unlabeled data. An inherent assumption is that this learning manner can derive those updates into the optimal hypothesis. However, its convergence may not be guaranteed well if those incremental updates are negative and disordered. In this paper, we introduce a black-box teaching hypothesis $h^\mathcal{T}$ employing a tighter slack term $\left(1+\mathcal{F}^{\mathcal{T}}(\widehat{h}_t)\right)Δ_t$ to replace the typical $2Δ_t$ for pruning. Theoretically, we prove that, under the guidance of this teaching hypothesis, the learner can converge into a tighter generalization error and label complexity bound than those non-educated learners who do not receive any guidance from a teacher:1) the generalization error upper bound can be reduced from $R(h^*)+4Δ_{T-1}$ to approximately $R(h^{\mathcal{T}})+2Δ_{T-1}$, and 2) the label complexity upper bound can be decreased from $4 θ\left(TR(h^{*})+2O(\sqrt{T})\right)$ to approximately $2θ\left(2TR(h^{\mathcal{T}})+3 O(\sqrt{T})\right)$. To be strict with our assumption, self-improvement of teaching is firstly proposed when $h^\mathcal{T}$ loosely approximates $h^*$. Against learning, we further consider two teaching scenarios: teaching a white-box and black-box learner. Experiments verify this idea and show better generalization performance than the fundamental active learning strategies, such as IWAL, IWAL-D, etc.