论文标题

相位场有限变形骨折具有有效的能量,用于正则裂纹面触点

Phase-Field Finite Deformation Fracture with an Effective Energy for Regularized Crack Face Contact

论文作者

Hakimzadeh, Maryam, Agrawal, Vaibhav, Dayal, Kaushik, Mora-Corral, Carlos

论文摘要

相位模型是解决现实断裂问题的领先方法。他们将裂纹视为第二阶段,并使用梯度术语将裂纹面涂抹,从而可以使用标准的数值方法进行模拟。这种正则化导致裂缝在参考文献中占据有限的体积,并导致无法适当地对裂缝面上的闭合或接触(而无需愈合)。具体而言,经典理想化的裂纹面部段是剪切成分为零,当裂纹打开并与完整材料相同时,正常分量为零。相位场断裂模型不会复制此行为。 这项工作通过引入有效的裂纹能量密度来解决这一缺点,该裂纹能量密度将正则化(有限体积)相位裂纹具有理想化的锋利裂纹的有效特性。该方法基于在裂纹的基础上应用变形梯度张量的QR(上三角)分解,从而实现了裂纹变形模式的透明鉴定。到那时,在那些不花能量的模式上放松,当裂纹面部张开时,裂纹面部近距离且零能量时,获得了有效的能量。 这种方法的一个亮点是,它完全在于有限变形的设置,从而可以对软材料和其他具有较大变形或旋转的设置进行潜在应用。该模型应用于数值研究代表性的复杂负荷,包括(1)在柔软的固体中的腔体上循环载荷,显示复杂应力状态下裂纹的生长和闭合; (2)循环剪切,显示出由裂纹闭合驱动的裂纹分支的复杂模式。

Phase-field models are a leading approach for realistic fracture problems. They treat the crack as a second phase and use gradient terms to smear out the crack faces, enabling the use of standard numerical methods for simulations. This regularization causes cracks to occupy a finite volume in the reference, and leads to the inability to appropriately model the closing or contacting -- without healing -- of crack faces. Specifically, the classical idealized crack face tractions are that the shear component is zero, and that the normal component is zero when the crack opens and identical to the intact material when the crack closes. Phase-field fracture models do not replicate this behavior. This work addresses this shortcoming by introducing an effective crack energy density that endows the regularized (finite volume) phase-field crack with the effective properties of an idealized sharp crack. The approach is based on applying the QR (upper triangular) decomposition of the deformation gradient tensor in the basis of the crack, enabling a transparent identification of the crack deformation modes. By then relaxing over those modes that do not cost energy, an effective energy is obtained that has the intact response when the crack faces close and zero energy when the crack faces are open. A highlight of this approach is that it lies completely in the setting of finite deformation, enabling potential application to soft materials and other settings with large deformation or rotations. The model is applied to numerically study representative complex loadings, including (1) cyclic loading on a cavity in a soft solid that shows the growth and closing of cracks in complex stress states; and (2) cyclic shear that shows a complex pattern of crack branching driven by the closure of cracks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源