论文标题

通过最小化学习迭代推理

Learning Iterative Reasoning through Energy Minimization

论文作者

Du, Yilun, Li, Shuang, Tenenbaum, Joshua B., Mordatch, Igor

论文摘要

深度学习在复杂的模式识别任务上表现出色,例如图像分类和对象识别。但是,它在需要非平凡推理的任务(例如算法计算)上挣扎。人类能够通过迭代推理来解决此类任务 - 花更多的时间思考更艰难的任务。但是,大多数现有的神经网络都表现出由神经网络体系结构控制的固定计算预算,从而阻止了对更艰难任务的其他计算处理。在这项工作中,我们为神经网络提供了一个新的迭代推理框架。我们训练一个神经网络,以在所有输出上参数化能量景观,并实施迭代推理的每个步骤,作为找到最小能量解决方案的能量最小化步骤。通过将推理作为一个能量最小化问题,对于导致更复杂的能源景观的更严重的问题,我们可以通过运行更复杂的优化程序来调整我们的基本计算预算。我们从经验上说明,我们的迭代推理方法可以在图和连续域中解决更准确和可推广的算法推理任务。最后,我们说明我们的方法可以递归解决需要嵌套推理的算法问题

Deep learning has excelled on complex pattern recognition tasks such as image classification and object recognition. However, it struggles with tasks requiring nontrivial reasoning, such as algorithmic computation. Humans are able to solve such tasks through iterative reasoning -- spending more time thinking about harder tasks. Most existing neural networks, however, exhibit a fixed computational budget controlled by the neural network architecture, preventing additional computational processing on harder tasks. In this work, we present a new framework for iterative reasoning with neural networks. We train a neural network to parameterize an energy landscape over all outputs, and implement each step of the iterative reasoning as an energy minimization step to find a minimal energy solution. By formulating reasoning as an energy minimization problem, for harder problems that lead to more complex energy landscapes, we may then adjust our underlying computational budget by running a more complex optimization procedure. We empirically illustrate that our iterative reasoning approach can solve more accurate and generalizable algorithmic reasoning tasks in both graph and continuous domains. Finally, we illustrate that our approach can recursively solve algorithmic problems requiring nested reasoning

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源