论文标题

步态FOREMER:通过人类运动预测进行几次步态损伤的严重性估计,对变压器进行自我监督的预训练

GaitForeMer: Self-Supervised Pre-Training of Transformers via Human Motion Forecasting for Few-Shot Gait Impairment Severity Estimation

论文作者

Endo, Mark, Poston, Kathleen L., Sullivan, Edith V., Fei-Fei, Li, Pohl, Kilian M., Adeli, Ehsan

论文摘要

帕金森氏病(PD)是一种神经系统疾病,具有各种可观察到的与运动相关的症状,例如运动缓慢,震颤,肌肉僵硬和姿势受损。 PD通常是通过评估运动障碍系统(例如运动障碍协会统一帕金森氏病评级量表(MDS-UPDRS)等评分系统的严重程度来诊断的。使用个体视频记录的自动严重性预测为无侵入性监测运动障碍提供了有希望的途径。但是,PD步态数据的大小有限阻碍模型能力和临床潜力。由于这种临床数据的稀缺性,并受到自我监督的大规模语言模型(例如GPT-3)的最新进展的启发,我们将人类运动预测用作有效的自我监督预训练的任务来估计运动障碍严重性。我们介绍步态预测和损伤估计变压器,首先是在公共数据集中预先培训的,以预测步态运动,然后应用于临床数据以预测MDS UPDRS步态障碍的严重性。我们的方法的表现优于以前的方法,这些方法仅依赖于临床数据,从而达到0.76的F1得分,精度为0.79,回忆为0.75。使用GaitForemer,我们展示了公共人类运动数据存储库如何通过学习通用运动表示来帮助临床用例。该代码可在https://github.com/markendo/gaitforemer上找到。

Parkinson's disease (PD) is a neurological disorder that has a variety of observable motor-related symptoms such as slow movement, tremor, muscular rigidity, and impaired posture. PD is typically diagnosed by evaluating the severity of motor impairments according to scoring systems such as the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS). Automated severity prediction using video recordings of individuals provides a promising route for non-intrusive monitoring of motor impairments. However, the limited size of PD gait data hinders model ability and clinical potential. Because of this clinical data scarcity and inspired by the recent advances in self-supervised large-scale language models like GPT-3, we use human motion forecasting as an effective self-supervised pre-training task for the estimation of motor impairment severity. We introduce GaitForeMer, Gait Forecasting and impairment estimation transforMer, which is first pre-trained on public datasets to forecast gait movements and then applied to clinical data to predict MDS-UPDRS gait impairment severity. Our method outperforms previous approaches that rely solely on clinical data by a large margin, achieving an F1 score of 0.76, precision of 0.79, and recall of 0.75. Using GaitForeMer, we show how public human movement data repositories can assist clinical use cases through learning universal motion representations. The code is available at https://github.com/markendo/GaitForeMer .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源