论文标题
计算成像中的深度光学编码设计
Deep Optical Coding Design in Computational Imaging
论文作者
论文摘要
计算光学成像(COI)系统利用其设置中的光学编码元素(CE)在单个或多个快照中编码高维场景,并使用计算算法对其进行解码。 COI系统的性能很大程度上取决于其主要组件的设计:CE模式和用于执行给定任务的计算方法。常规方法依赖于随机模式或分析设计来设置CE的分布。但是,深神经网络(DNN)的可用数据和算法功能已在CE数据驱动的设计中开辟了新的地平线,该设计共同考虑了光学编码器和计算解码器。具体而言,通过通过完全可区分的图像形成模型对COI测量进行建模,该模型可以考虑基于物理的光及其与CES的相互作用,可以以端到端(E2E)方式优化定义CE和计算解码器的参数。此外,通过仅在同一框架中优化CE,可以从纯光学器件中执行推理任务。这项工作调查了CE数据驱动的设计的最新进展,并提供了有关如何参数化不同光学元素以将其包括在E2E框架中的指南。由于E2E框架可以通过更改损耗功能和DNN来处理不同的推理应用程序,因此我们提出低级任务,例如光谱成像重建或高级任务,例如使用基于任务的光学光学体系结构来增强隐私的姿势估计。最后,我们说明了使用全镜DNN以光速执行的分类和3D对象识别应用程序。
Computational optical imaging (COI) systems leverage optical coding elements (CE) in their setups to encode a high-dimensional scene in a single or multiple snapshots and decode it by using computational algorithms. The performance of COI systems highly depends on the design of its main components: the CE pattern and the computational method used to perform a given task. Conventional approaches rely on random patterns or analytical designs to set the distribution of the CE. However, the available data and algorithm capabilities of deep neural networks (DNNs) have opened a new horizon in CE data-driven designs that jointly consider the optical encoder and computational decoder. Specifically, by modeling the COI measurements through a fully differentiable image formation model that considers the physics-based propagation of light and its interaction with the CEs, the parameters that define the CE and the computational decoder can be optimized in an end-to-end (E2E) manner. Moreover, by optimizing just CEs in the same framework, inference tasks can be performed from pure optics. This work surveys the recent advances on CE data-driven design and provides guidelines on how to parametrize different optical elements to include them in the E2E framework. Since the E2E framework can handle different inference applications by changing the loss function and the DNN, we present low-level tasks such as spectral imaging reconstruction or high-level tasks such as pose estimation with privacy preserving enhanced by using optimal task-based optical architectures. Finally, we illustrate classification and 3D object recognition applications performed at the speed of the light using all-optics DNN.