论文标题

基于切线的配方和对标准平面定位在3D超声中的解剖学感知的代理

Agent with Tangent-based Formulation and Anatomical Perception for Standard Plane Localization in 3D Ultrasound

论文作者

Zou, Yuxin, Dou, Haoran, Huang, Yuhao, Yang, Xin, Qian, Jikuan, Zhen, Chaojiong, Ji, Xiaodan, Ravikumar, Nishant, Chen, Guoqiang, Huang, Weijun, Frangi, Alejandro F., Ni, Dong

论文摘要

标准平面(SP)定位对于常规临床超声(US)诊断至关重要。与2d US相比,3D US可以一次扫描获得多个视图平面,并通过添加冠状平面提供完整的解剖结构。但是,由于方向的变化和巨大的搜索空间,在3D US中手动导航SPS是费力的和有偏见的。在这项研究中,我们介绍了3D US中自动SP本地化的新型增强学习(RL)框架。我们的贡献是三倍。首先,我们将3D中的SP定位作为RL中的基于切线的问题,以重组动作空间并大大降低搜索空间。其次,我们设计了一种辅助任务学习策略,以增强模型识别跨越平面搜索中非SPS和SP的微妙差异的能力。最后,我们通过同时利用空间和解剖信息来提出空间 - 动态奖励,以有效地指导学习轨迹。我们探讨了我们方法在子宫和胎儿脑数据集上定位四个SP的功效。实验表明,我们的方法达到了较高的定位精度以及稳健的性能。

Standard plane (SP) localization is essential in routine clinical ultrasound (US) diagnosis. Compared to 2D US, 3D US can acquire multiple view planes in one scan and provide complete anatomy with the addition of coronal plane. However, manually navigating SPs in 3D US is laborious and biased due to the orientation variability and huge search space. In this study, we introduce a novel reinforcement learning (RL) framework for automatic SP localization in 3D US. Our contribution is three-fold. First, we formulate SP localization in 3D US as a tangent-point-based problem in RL to restructure the action space and significantly reduce the search space. Second, we design an auxiliary task learning strategy to enhance the model's ability to recognize subtle differences crossing Non-SPs and SPs in plane search. Finally, we propose a spatial-anatomical reward to effectively guide learning trajectories by exploiting spatial and anatomical information simultaneously. We explore the efficacy of our approach on localizing four SPs on uterus and fetal brain datasets. The experiments indicate that our approach achieves a high localization accuracy as well as robust performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源