论文标题

指数的产物集中在总和的指数周围

Product of exponentials concentrates around the exponential of the sum

论文作者

Anshelevich, Michael, Pritchett, Austin

论文摘要

对于两个矩阵$ a $和$ b $,以及大$ n $,我们表明$ e^{a/n} $的大多数产品和$ e^{b/n} $的$ e^{a/n $ factor of $ e^{b/n} $都接近$ e^{a + b} $。这扩展了Lie-Trotter公式。基本证明是基于单词和晶格路径之间的关系,二项式系数的渐近学以及基质不等式的。结果可容纳两个以上的矩阵。

For two matrices $A$ and $B$, and large $n$, we show that most products of $n$ factors of $e^{A/n}$ and $n$ factors of $e^{B/n}$ are close to $e^{A + B}$. This extends the Lie-Trotter formula. The elementary proof is based on the relation between words and lattice paths, asymptotics of binomial coefficients, and matrix inequalities. The result holds for more than two matrices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源