论文标题

域自适应3D医学图像合成:一种有效的无监督方法

Domain-Adaptive 3D Medical Image Synthesis: An Efficient Unsupervised Approach

论文作者

Hu, Qingqiao, Li, Hongwei, Zhang, Jianguo

论文摘要

医疗图像合成引起了人们越来越多的关注,因为它可以产生缺失的图像数据,改善诊断并使许多下游任务受益。但是,到目前为止,开发的合成模型并不适应呈现域移位的看不见的数据分布,从而限制了其在临床常规中的适用性。这项工作着重于探索3D图像到图像合成模型的域适应性(DA)。首先,我们强调了分类,分割和合成模型之间DA的技术差异。其次,我们提出了一种基于近似3D分布的2D变异自动编码器的新型有效适应方法。第三,我们介绍了有关适应数据量和关键超参数量的影响的经验研究。我们的结果表明,所提出的方法可以显着提高3D设置中未见域的合成精度。该代码可在https://github.com/winstonhutiger/2d_vae_uda_for_3d_sythesis上公开获得。

Medical image synthesis has attracted increasing attention because it could generate missing image data, improving diagnosis and benefits many downstream tasks. However, so far the developed synthesis model is not adaptive to unseen data distribution that presents domain shift, limiting its applicability in clinical routine. This work focuses on exploring domain adaptation (DA) of 3D image-to-image synthesis models. First, we highlight the technical difference in DA between classification, segmentation and synthesis models. Second, we present a novel efficient adaptation approach based on 2D variational autoencoder which approximates 3D distributions. Third, we present empirical studies on the effect of the amount of adaptation data and the key hyper-parameters. Our results show that the proposed approach can significantly improve the synthesis accuracy on unseen domains in a 3D setting. The code is publicly available at https://github.com/WinstonHuTiger/2D_VAE_UDA_for_3D_sythesis

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源