论文标题

更少的更多:比较3D医疗图像细分的主动学习策略

Less Is More: A Comparison of Active Learning Strategies for 3D Medical Image Segmentation

论文作者

Burmeister, Josafat-Mattias, Rosas, Marcel Fernandez, Hagemann, Johannes, Kordt, Jonas, Blum, Jasper, Shabo, Simon, Bergner, Benjamin, Lippert, Christoph

论文摘要

由于将医疗图像数据标记为一个昂贵且劳动密集型的过程,因此近年来,Active学习在医学图像分割领域中广受欢迎。文献中已经提出了各种积极的学习策略,但是它们的有效性高度取决于数据集和培训方案。为了促进现有策略的比较,并为评估新策略提供了基准,我们评估了从医学分割的十项全能中的三个数据集上的几种著名的活跃学习策略的性能。此外,我们考虑了专门针对3D图像数据量身定制的扎实的采样策略。我们证明,随机和踩踏的采样都是强大的基准,并讨论了所研究方法的优势和缺点。为了允许其他研究人员将他们的工作与我们的结果进行比较,我们提供了一个开源框架,以在各种医疗分割数据集上基准主动学习策略。

Since labeling medical image data is a costly and labor-intensive process, active learning has gained much popularity in the medical image segmentation domain in recent years. A variety of active learning strategies have been proposed in the literature, but their effectiveness is highly dependent on the dataset and training scenario. To facilitate the comparison of existing strategies and provide a baseline for evaluating novel strategies, we evaluate the performance of several well-known active learning strategies on three datasets from the Medical Segmentation Decathlon. Additionally, we consider a strided sampling strategy specifically tailored to 3D image data. We demonstrate that both random and strided sampling act as strong baselines and discuss the advantages and disadvantages of the studied methods. To allow other researchers to compare their work to our results, we provide an open-source framework for benchmarking active learning strategies on a variety of medical segmentation datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源