论文标题
Skipp'd:短期太阳预测的天空图像和光伏发电数据集
SKIPP'D: a SKy Images and Photovoltaic Power Generation Dataset for Short-term Solar Forecasting
论文作者
论文摘要
太阳能的间歇性质挑战了光伏(PV)在电网中的大规模集成。使用深度学习的基于天空图像的太阳预测已被认为是预测短期波动的一种有希望的方法。但是,对于基于图像的太阳能预测,几乎没有公开可用的标准化基准数据集,这限制了不同预测模型的比较和预测方法的探索。为了填补这些空白,我们介绍了Skipp'd-天空图像和光伏发电数据集。该数据集包含三年(2017-2019)的质量控制下采样的天空图像和PV发电数据,这些数据可用于使用深度学习的短期太阳能预测。此外,为了支持研究的灵活性,我们还提供了高分辨率,高频天空图像和PV发电数据以及并发的天空录像。我们还包括一个包含数据处理脚本和基线模型实现的代码库,以供研究人员重现我们以前的工作并加速其在太阳预测中的研究。
Large-scale integration of photovoltaics (PV) into electricity grids is challenged by the intermittent nature of solar power. Sky-image-based solar forecasting using deep learning has been recognized as a promising approach to predicting the short-term fluctuations. However, there are few publicly available standardized benchmark datasets for image-based solar forecasting, which limits the comparison of different forecasting models and the exploration of forecasting methods. To fill these gaps, we introduce SKIPP'D -- a SKy Images and Photovoltaic Power Generation Dataset. The dataset contains three years (2017-2019) of quality-controlled down-sampled sky images and PV power generation data that is ready-to-use for short-term solar forecasting using deep learning. In addition, to support the flexibility in research, we provide the high resolution, high frequency sky images and PV power generation data as well as the concurrent sky video footage. We also include a code base containing data processing scripts and baseline model implementations for researchers to reproduce our previous work and accelerate their research in solar forecasting.